

ADOBE SYSTEMS INCORPORATED

Corporate Headquarters

345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000

Draft 1.0b7 • July 7, 2000

GoLive™ 5.0
Extend Script SDK
Programmer’s Guide

SDK Version 1.0
For Adobe

®

 GoLive Version 5.0

This book describes the use of the GoLive Extend Script SDK with
version 5.0 of Adobe GoLive.

Please be aware that both the SDK and this book are preliminary and
subject to change. Visit

http://www.adobe.com/

 for updated versions of
this document and additional code samples.

2

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Copyright 2000 Adobe Systems Incorporated. All rights reserved.

Adobe

®

 GoLive™ 5.0 Extend Script Programmer’s Guide for Windows

®

 and Mac OS.

This manual, as well as the software described in it, is furnished under license and may be used or copied only in accordance with the terms of such
license. The content of this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that
may appear in this documentation. Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe Systems
Incorporated.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The
unauthorized incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain
any permission required from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.

Adobe, the Adobe logo, Acrobat, the Acrobat logo, and GoLive are either registered trademenarks or trademarks of Adobe Systems Incorporated
in the United States and other countries.

Macintosh and Mac are trademarks of Apple Computer, Inc., registered in the United States and other countries. Microsoft, Windows, and Windows
NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. All other trademarks are the
property of their respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. government end users. The software and documentation are “commercial items,” as that term is defined at 48 C.F.R. §2.101,
consisting of “commercial computer software” and “commercial computer software documentation,” as such terms are used in 48 C.F.R. §12.212
or 48 C.F.R. §227.7202, as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the
commercial computer software and commercial computer software documentation are being licensed to U.S. government end users (A) only as
commercial items and (B) with only those rights as are granted to all other end users pursuant to the terms and conditions set forth in the Adobe
standard commercial agreement for this software. Unpublished rights reserved under the copyright laws of the United States.

Version History

Date Draft # Comments

07 July 00 1.0b7 first public beta draft

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

3

Contents

Welcome . 17

About The GoLive Extend Script SDK . 17

Compatibility Information. 17

About This Book . 18

Who Should Read This Book . 18

How To Use This Book. 18

Document Conventions . 20

PART I: Programmer’s Guide

Chapter 1 Getting Started . 23

Contents of the GoLive Extend Script SDK . 23

The ReadMe.html File . 23

The Samples Folder . 24

The GoLive SDK Documentation Folder . 25

Installing the GoLive Extend Script SDK. 25

Installing Adobe GoLive . 25

Installing the SDK Sample Code and Documentation 25

Enabling the Extend Script Module . 26

Installing the Sample Extensions . 27

Configuring GoLive for Extend Script Development 29

Enabling the JavaScript Shell palette . 30

Examining the Sample Extensions. 31

Extensions to the Special Menu . 31

Custom Menus. 31

Custom Palette Tabs and Custom Palette Items. 32

Executing JavaScript Code in the GoLive Environment 33

Setting the JavaScript Timeout . 33

Accessing Page Elements From JavaScript . 33

JavaScript Objects in the GoLive Object Model . 34

Name Property and Name Attribute . 35

JavaScript Object Arrays . 35

4

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Comparing Objects . 36

Anatomy of an Extend Script Extension . 37

Creating An Extend Script Extension Module . 38

Creating the Extension Folder . 38

Creating the Main.html File . 38

Adding SDK Tags and JavaScript Functions to the Module 39

Chapter 2 Menus . 41

Custom Menus . 41

Overview . 42

Adding the Menu Bar Tag . 42

Defining the Menu . 42

Defining Menu Items . 43

Implementing the menuSignal Function . 44

Assigning Keyboard Shortcuts To Menu Items . 45

Multiple Custom Menus . 47

Submenus . 47

Setting A Menu Item’s Checked State Explicitly . 48

Setting a Menu Item’s Enabled State Explicitly. . 48

Setting The State of A Menu Item Automatically . 49

Adding Items to the Special Menu . 51

Chapter 3 Dialogs and Palettes . 53

Modal Dialog Windows . 53

Defining the Modal Dialog Window . 54

Defining Dialog Content . 55

Displaying the Dialog . 59

Implementing the controlSignal Function . 60

Floating Palettes . 61

Using the Dialog Editor Extension . 63

Chapter 4 Custom Elements . 67

Overview . 67

Tags For Creating Custom Elements . 67

Custom Box Event-Handling Functions . 68

Development Overview . 68

Defining A Custom HTML Tag . 69

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

5

Defining the Custom Tag’s Palette Icon and HTML Content 70

Installing A Custom Entry In the Objects Palette . 72

Adding Palette Entries to a Built-in Tab . 73

Adding Palette Entries to a Custom Tab . 74

Basic Custom Boxes . 74

Initializing the Custom Box . 75

Displaying the Custom Box . 75

Inspecting the Custom Element . 78

Resizing Custom Boxes . 82

Built-In Undo Support . 82

Drawing Custom Controls . 83

Updating A Control’s Appearance Immediately . 83

Redefining Existing Tags . 83

Chapter 5 Manipulating Document Objects 85

The Markup Tree . 85

JavaScript Access to the Markup Tree . 87

Selections . 88

Retrieving the Current Selection. 89

Setting the Current Selection . 90

Manipulating Elements Programmatically . 90

Supporting the Undo and Redo Commands . 95

Creating the Undo Object . 95

Initializing the Undo Object . 96

Implementing the undoSignal Function . 97

Accessing the Document History . 98

Chapter 6 Files . 99

Creating a File Object . 99

Built-in Access to Commonly-Used Folders . 99

Creating A File Object Explicitly . .100

Testing For the Presence of a File or Folder . .100

Determining What the File Object Represents. .100

Creating A Folder Programmatically . .101

Retrieving Files Programmatically . .101

Retrieving A File’s Location .101

Moving Files and Folders .101

6

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Copying Files and Folders . 102

Uploading Files To Remote Volumes . 102

Chapter 7 Additional Topics . 103

Working With Pictures . 103

Creating Pictures. 103

Deleting Pictures . 103

Releasing Saved JavaScript References. 103

Timed Tasks . 104

Persistent Data . 104

Progress Bars . 105

Localization. 106

Chapter 8 Debugging. 109

Integrated JavaScript Source Debugger . 109

Enabling The Integrated Debugger and Other Debug Services 109

Script Debugger Window. 109

Setting Breakpoints . 112

Script Breakpoints Window . 113

Debugger Object ($) . 114

JavaScript Shell Palette . 115

PART II: Reference

Chapter 9 Tags . 119

Modules . 119

jsxmodule . 119

Locales . 120

jsxlocale . 120

Dialogs . 120

jsxdialog . 121

jsxpalette . 121

jsxcontrol . 122

Palette Items and Foreign Tags . 124

jsxpalettegroup. 125

jsxpalettentry. 126

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

7

img. .126

jsxelement . .126

jsxinspector .128

Custom Element Example . .128

Menus .130

jsxmenubar .131

jsxmenu .131

jsxitem . .131

Chapter 10 Objects . 133

Global Properties and Functions. .133

Global Properties .133

Global Functions. .134

write .135

GlobalPrefs Object . .138

Prefs Object .138

Application Object .138

Application Object Properties .138

Application Object Functions .140

Document Object .141

Document Object Properties .141

Document Object Functions . .142

Module Object .143

Module Object Properties .143

Module Object Functions .143

Link Object . .144

Link Object Properties . .144

Link Object Functions .144

Box Object . .145

Box Object Properties . .145

Box Object Functions .146

Collection Object . .147

Collection Object Properties . .147

Collection Functions . .147

Picture Object .147

Picture Object Properties .147

Picture Object Functions .147

8

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Control Object . 148

Control Object Properties . 148

Control Object Functions. 149

Dialog Object . 150

Dialog Object Properties . 150

Dialog Object Functions . 150

Draw Object . 151

Draw Object Properties . 151

Draw Object Functions. 151

Markup Object . 152

Markup Object Properties . 153

Markup Object Functions . 153

Menu Object . 154

Menu Object Properties . 154

Menu Object Functions . 154

MenuItem Object . 155

MenuItem Object Properties . 155

MenuItem Object Functions . 155

Selection Object . 156

Selection Object Properties . 156

Selection Object Functions . 156

Undo Object . 157

Global Undo Functions. 157

Undo Object Properties . 157

Undo Object Functions. 158

History Object . 158

History Object Properties . 158

SiteReference Object. 159

SiteReference Object Properties. 159

SiteReference Object Functions . 160

SiteCollection Object . 161

Site Collection Object Properties . 161

Site Collection Object Functions . 161

File Object . 162

File Object Properties . 162

File Object Functions . 163

$ Object (Debugger Object) . 165

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

9

$ Object Properties .165

$ Object Functions. .166

Chapter 11 Event-Handling Functions 167

Global Functions . .167

initializeModule .167

terminateModule. .167

Custom Boxes .167

parseBox. .167

drawBox . .168

boxResized .168

inspectBox . .168

Controls .169

Custom Controls. .170

Chapter 12 C and C++ APIs For Use
In External Binary Libraries 171

C API Synopsis .172

C++ API Synopsis .173

Data Types . .173

JSValue pointer .173

JSAValueType Scalar Types . .173

JSANativeMethod Type .174

JSADrawInfo Struct .174

Initialization and Termination Functions .175

JSA_INIT Macro . .175

JSAMain . .175

JSARegisterFunction .176

JSAExit .176

Accessor Functions .177

JSAGetValueType . .177

JSAValueToInt . .178

JSAValueToBool . .178

JSAValueToString .179

JSAValueToDouble .179

JSAIntToValue . .179

10

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

JSABoolToValue . 180

JSAStringToValue . 180

JSADoubleToValue. 180

JSAUndefinedToValue . 181

JSASetError . 181

JSAEval . 181

PART III: Appendixes

Appendix A Using External Libraries 185

Benefits of External Libraries. 185

External JavaScript Libraries . 186

Implementing A JavaScript Library . 186

Installing An External JavaScript Library. 186

Calling JavaScript Library Functions. 187

Implementing External Binary Libraries . 187

Including C Libraries . 187

Initializing the JavaScript Engine. 188

Defining External Library Functions . 189

Registering External Functions . 192

Implementing Optional Termination Code . 192

Building An External Binary Library . 193

Installing An External Binary . 193

Calling C and C++ Library Functions From JavaScript. 193

Measuring Performance . 194

Appendix B Sort Order Tables . 195

Window Menu Items . 195

Objects Palette Entries . 196

Glossary . 199

Index . 201

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

11

List of Figures

Figure 1.1

Enabling the Extend Script module . 26

Figure 1.2

Extend Scripts folder with SDK installed 28

Figure 1.3

GoLive menu bar with SDK installed . 28

Figure 1.4

JavaScript Shell palette . 30

Figure 1.5

Markup Tree and Selections submenus of the Special menu 31

Figure 1.6

SDK Test menu . 31

Figure 1.7

Server Side Incluldes palette tab and palette items 32

Figure 1.8

Dialog Editor palette tab and palette items 32

Figure 1.9

Contents of the Custom Box sample extension 37

Figure 2.1

The Hello, GoLive! menu . 42

Figure 2.2

Alerts displayed by the Hello example 44

Figure 2.3

Submenu with its own submenu . 47

Figure 2.4

Enabled and disabled menu items . 49

Figure 2.5

Custom items appended to the Special menu 52

Figure 3.1

Positioning controls in dialog’s coordinate plane 56

Figure 3.2

Type attribute specifies appearance and behavior of jsxcontrol object . . 57

Figure 3.3

Modeless dialog, floating window, or palette 61

Figure 3.4

Sort order in Window menu . 63

Figure 3.5

Choosing the Dialog Editor palette . 64

Figure 3.6

Selecting layout grid activates its inspector window 64

Figure 3.7

Layout view of typical dialog content . 65

Figure 3.8

Source Code window with dialog code highlighted 66

Figure 4.1

Display attribute of jsxpalettentry . 70

Figure 4.2

Custom tab in Objects palette. . 72

Figure 4.3

Inspecting the Attributes of a Custom Element 78

Figure 5.1

HTML Outline view . 86

Figure 5.2

Markup Tree window shows objects that contain current selection 86

Figure 7.1

Progress Bar . .105

Figure 7.2

Busy Bar .105

Figure 8.1

Script Debugger window . .110

Figure 8.2

Script Breakpoints window . .113

Figure 8.3

JavaScript Shell Palette .115

12

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

13

List of Tables

Table 2.1

Translation of Modifier Keys to Alternate Platforms 46

Table 5.1

Identifiers for Document and markup objects 87

Table 7.1

Translation table example .106

Table B.1

Codes used to sort Window menu items195

Table B.2

Codes used to sort Objects palette entries 196

14

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

15

List of Examples

16

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

17

Welcome

This Preface describes the use of this book, and provides information on Adobe programs for
GoLive extension developers.

About The GoLive Extend Script SDK

The GoLive Extend Script SDK enables you to extend the behavior and user interface of
version 5.0 of Adobe GoLive. Using specialized tags provided by the SDK, and your own
JavaScript code, you can use GoLive scripting and layout tools to create customized page
elements and user interface items in the GoLive website design environment, including fully-
featured

●

Floating palettes (modeless windows) that provide drag-and-drop tools and page elements

●

Modal dialogs that include text, graphics and controls.

●

Menus and menu items.

●

Custom HTML elements.

Optionally, Extend Script extensions can call custom libraries written in the C, C++ or
JavaScript programming language; however, knowledge of C is not required to use this SDK.

Compatibility Information

This SDK requires the use of version 5.0 of Adobe GoLive. This version of GoLive supports
version 1.4 of the JavaScript language. By default, GoLive uses the Netscape flavor of
JavaScript 1.4; however, you can specify that it use the Microsoft® JScript flavor or the
ECMA-262 flavor. For details, see the description of the

flavor

 property in “$ Object
Properties” on page 165.

Although the JavaScript language supports Unicode, the GoLive Javascript interpreter does
not. GoLive implements JavaScript strings as 8-bit ASCII.

If you plan to create an external C or C++ library that your

Extend Script

 extension can call,
you’ll need Microsoft Visual C++ 6.0 to create a dynamically-linked library (DLL) for use on
Windows® platforms, and Metrowerks’ CodeWarrior 5 Pro to create shared libraries for use
on Mac OS platforms.

18

GoLive™ 5.0 Extend Script SDK Programmer’s Guide

About This Book

This book describes how to add functionality and custom user interface elements to Adobe
GoLive 5.0 using the GoLive Extend Script SDK.

Who Should Read This Book

This book is for anyone who wants to extend the capabilities of Adobe GoLive using
JavaScript and the special markup tags that the GoLive Extend Script SDK provides. This
book assumes that

●

You know how to create pages and web sites in Adobe GoLive, as described in the

 Adobe GoLive User Guide

 for version 5.0 of Adobe GoLive.

●

You have a working understanding of the HTML and JavaScript languages, and have
written some of your own JavaScript scripts.

You don’t need knowledge of the C or C++ programming languages unless you plan to write
an external code library in one of these languages. The vast majority of GoLive extensions do
not use such libraries. For more information, see Appendix A, “Using External Libraries.”

How To Use This Book

The first part of this book is a programmer’s guide. It introduces the special tags and
JavaScript functions that the SDK provides, and then describes how to use them to create
GoLive extensions. The second part of this book provides detailed reference information about
the tags and the JavaScript objects that the SDK provides.

All extension developers should read Chapter 1, “Getting Started” and “Custom Menus” on
pages 41 - 47. Once you’ve assimilated this material, you can skip to the section of this book
that describes the programming task at hand; for example, if you need to display a window in
GoLive, read the required sections and then go to Chapter 3, “Dialogs and Palettes.”

Chapter Summaries

Here’s a more detailed summary of the information that each chapter in this book provides:

● “Welcome” is this Preface. It describes the content of this book and offers suggestions for
its most effective use.

● Chapter 1, “Getting Started,” provides conceptual information you’ll use to write
JavaScript modules that extend the Adobe GoLive design environment. It also provides an
SDK installation guide and then provides step-by-step instructions that guide you through
the creation of the basic file structure you’ll use to define any extension.

● Chapter 2, “Menus,” begins with a brief tutorial that describes how to add a custom menu
to GoLive. Subsequent sections describe submenus, multiple menus and setting the state of
menu items.

● Chapter 3, “Dialogs and Palettes,” describes how to create modal dialogs and floating
palettes.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 19

● Chapter 4, “Custom Elements,” describes how to define a custom element as an icon the
user can drag from the Objects palette to a GoLive document.

● Chapter 5, “Manipulating Document Objects,” describes how to manipulate GoLive
document objects or their corresponding source tags from JavaScript.

● Chapter 6, “Files,” describes how to manipulate local files and their data programmatically.

● Chapter 7, “Additional Topics,” describes additional features the SDK provides.

● Chapter 8, “Debugging,” describes the use of the integrated JavaScript debugger that the
GoLive Extend Script SDK provides.

● Chapter 9, “Tags,” describes custom tags that the GoLive Extend Script SDK supplies. You
use these tags to define dialogs, palettes, controls, and custom elements your extension
adds to the GoLive environment.

● Chapter 10, “Objects,” describes the JavaScript objects, properties, and functions that the
SDK provides.

● Chapter 11, “Event-Handling Functions,” describes optional functions and methods your
extension can implement to respond to events such as those generated by the user’s
interaction with your extension’s controls.

● Chapter 12, “C and C++ APIs For Use In External Binary Libraries,” describes data types
and utility functions that optional external C and C++ libraries can use to exchange data
with Extend Script extensions.

● Appendix A, “Using External Libraries,” describes how to write C functions your
extension can call from JavaScript.

● Appendix B, “Sort Order Tables,” provides the numeric values GoLive uses to order menu
items.

To facilitate access to its contents, this book also provides

● a table of Contents

● an Index

● an Acrobat® Catalog index file (index.pdx) that enhances searches of this PDF document.

NOTE: The index file and its associated folder are in the GoLive SDK Documentation folder
with the PDF file you are reading now. You must enable the index file before you can
use it; for more information, choose the Help>Acrobat Guide menu item in Adobe
Acrobat, then click the Searching Catalog Indexes bookmark.

20 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Document Conventions

This section describes typographical and naming conventions used in this document.

Typographical conventions

This book uses the typographical conventions described here.

Boldface font identifies the first use and definition of a term.

Courier font identifies code, such as JavaScript code, HTML code, filenames, and
pathnames. In pathnames, the forward slash (/) is used as a directory separator; for example
the Samples/Main.html notation refers to the Main.html file in the Samples folder.

Italic text identifies replaceable text in code; for example, the myName text in
name="myName" represents a value you are expected to supply. Thus name="myName"
represents code such as name="Fred", or name="Homer", and so on.

Blue underlined text signifies a hyperlink you can click to display related information.

GoLive menus and menu items are listed in sans-serif bold font . The > symbol is used as
shorthand notation for navigating to menu items; for example the Edit>Cut item refers to the
Cut item in the Edit menu.

Naming Conventions

This book uses the naming conventions described here.

● The names of all tags and objects that the SDK provides begin with the JSX prefix; for
example, the SDK provides a <jsxmenu> tag you can use to define menus. To improve
readability, this book omits the JSX prefix from class and object names; for example, the
class this book calls Module is actually implemented as the JSXModule class.

Terminology

This section introduces terminology conventions used in this book.

Throughout this book, you’ll see many references to tags and elements. It’s important to
differentiate between the two, because the GoLive Extend Script SDK allows you to define
and manipulate both. In short, tags define elements; specifically,

● A tag consists of alphanumeric tokens enclosed by angle brackets (<>), as in the ,
, or <H1> tags. Tags that are used singly, such as the tag, are unary tags. Tags
that must be used in pairs are binary tags; for example, the <H1> opening tag must always
be paired with an </H1> closing tag. When this book refers to a binary tag, it names the
opening tag only and assumes you understand that the presence of the closing tag is
implied.

● A tag defines an element when you supply all of the attribute values required to define an
instance of the entity the tag represents. Thus, an HTML document could supply multiple
 tags that define multiple unique IMG elements. Some tags don’t require any
attributes at all; for example, the
 break element is complete just as it appears here.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 21

Part I

Programmer’s Guide

22 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 23

1 Getting Started

The GoLive Extend Script SDK enables you to add custom page elements, tools, and user
interface items to the GoLive 5.0 environment. This chapter provides conceptual and practical
information you’ll need to start creating your own extensions to the GoLive environment using
JavaScript, special tags provided by this SDK and, optionally, standard HTML tags.

The first part of this chapter introduces the SDK itself:

● Contents of the GoLive Extend Script SDK

● Installing Adobe GoLive

● Installing the GoLive Extend Script SDK

● Examining the Sample Extensions

The second part of this chapter descirbes the JavaScript environment that GoLive provides to
Extend Script extensions:

● Executing JavaScript Code in the GoLive Environment

● Accessing Page Elements From JavaScript

The chapter concludes by describing the file and folder structure GoLive requires extensions to
have:

● Anatomy of an Extend Script Extension

● Creating An Extend Script Extension Module

Contents of the GoLive Extend Script SDK

The Adobe GoLive SDK 5.0r1 folder holds a Readme.html file, a Samples folder and a GoLive
SDK Documentation folder.

The ReadMe.html File

Before installing the SDK, see the ReadMe.html file for late-breaking information concerning
the particular version of the SDK you are about to install.

24 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The Samples Folder

The Samples folder offers a taste of the sorts of customizations to GoLive that this SDK
enables you to create:

● Custom Box
Creates a custom Objects palette icon that
– defines a custom HTML tag.
– adds a custom HTML element to the page when the user drops the icon on a GoLive

document window.

Also provides a custom Inspector window that enables the user to modify the properties of
the custom element interactively.

● Menus and Dialogs
Creates custom menus, menu items, dialogs, and dialog controls.

● Palettes
Creates a floating palette window and palette menu. Also demonstrates how to call an
external library by calling a function that the Binary API sample implements

● Markup Tree
Manipulates the JavaScript objects that represent page elements in the GoLive
environment.

● Dialog Editor
A more complex example that provides several custom elements as Objects palette entries.
You can drag these palette entries to a GoLive document window to a design a custom
dialog window your extension can use.

● KeyMap
Displays a character map that the user can click to insert characters in a GoLive document.
Uses external images to customize its display according to whether it is run on a Mac OS or
Windows host platform.

● Binary API
Files for creating optional compiled external libraries that the JavaScript code in an Extend
Script extension can call. This folder contains
– Interface (header) and implementation files for developing external libraries in the C or

C++ languages
– A Metrowerks CodeWarrior project for Mac OS platforms
– A Microsoft Developer Studio 6.0 project for Windows platforms

Most Extend Script extensions don’t require external code libraries—you’ll note that the
quite full-featured sample extensions don’t—but the GoLive Extend Script SDK does
support their use. If your extension has specialized needs that require calling an external C
library from JavaScript, you can use the files in the Binary API folder to create platform-
specific external code libraries for Mac OS and Windows platforms in the C programming
language.

● SSI
Objects palette items that add server-side includes to a GoLive document.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 25

● Common
Repository for optional external libraries, such as your own library of JavaScript functions,
or the JSASample library that the SDK supplies.

● Component
Menu items that convert one or more GoLive Components into separate editable items.
This extension is pre-installed in the Modules\Extend Scripts folder. The Detach
component menu item is enabled when you select a component in the current document.
The Detach all components menu item is enabled when the current document contains one
or more components.

For information on creating and working with GoLive Components, see the Adobe GoLive
5.0 User’s Guide.

The GoLive SDK Documentation Folder

The GoLive SDK Documentation folder contains this PDF document and an Acrobat Catalog
index to speed your searches for information. You must enable the index file before you can
use it; for more information, choose the Help>Acrobat Guide menu item in Adobe Acrobat,
then click the Searching Catalog Indexes bookmark.

Installing the GoLive Extend Script SDK

This section describes how to install the GoLive Extend Script SDK.

Installing Adobe GoLive

The GoLive Extend Script SDK requires version 5.0 of Adobe GoLive. If you haven’t yet
installed version 5.0 of Adobe GoLive on the computer you’re going to use to create
extensions, you should do so now. For instructions, see the Readme file that accompanies the
Adobe GoLive 5.0 product distribution.

Installing the SDK Sample Code and Documentation

The Adobe GoLive SDK 5.0r1 folder provides this documentation, the code samples it
references, and additional code samples this book does not describe. This section describes
how to install the core set of sample code and documentation.

Installing on Mac OS Platforms

To install the sample code and documentation on your computer, drag the entire Adobe GoLive
SDK 5.0r1 folder to your hard disk. Then go on to the sections “Enabling the Extend Script
Module” on page 26 and “Installing the Sample Extensions” on page 27.

26 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Installing on Windows Platforms

To install the sample code and documentation on your computer,

1. Run the Adobe GoLive product installer.

2. Select the Custom install option.

3. Click the Adobe GoLive SDK checkbox, placing a checkmark next to it.

4. Click the OK button.

Now, go on to the sections “Enabling the Extend Script Module” on page 26 and “Installing
the Sample Extensions” on page 27.

Enabling the Extend Script Module

The GoLive Extend Script SDK requires use of the Extend Script module. If this module is not
activated, you cannot load or run Extend Script extensions.

FIGURE 1.1 Enabling the Extend Script module

The GoLive installer activates this module when it installs GoLive; if this setting has been
changed, you can take the following steps to enable the Extend Script module. You only need

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 27

to perform these steps once—the Extend Script module remains enabled in subsequent GoLive
user sessions:

1. Open GoLive if it is not already running.

2. Open the Edit>Preferences…>Modules panel.

3. To enable the Extend Script module, click the Extend Script checkbox, placing a checkmark
in it, as Figure 1.1 illustrates.

4. Click OK to confirm your changes and dismiss the Preferences panel.

5. Quit GoLive and restart it.

You can take similar steps to enable other modules as required by the extension or site you are
developing. To reduce startup time during extension development, you can disable unused
modules as described in “Configuring GoLive for Extend Script Development” on page 29.

Installing the Sample Extensions

This section describes how to install an Extend Script extension in GoLive. You can use the
procedure this section describes to install the sample extensions that the SDK provides, as well
as your own extensions, or those provided by third parties.

Each folder in the Samples folder holds a different example of an Extend Scripts extension. It
is recommended that you install the following core set of sample extensions, as this
programmer’s guide refers to them frequently:

● Custom Box

● Menus and Dialogs

● Palettes

● Markup Tree

● Dialog Editor

● KeyMap

● Binary API

● Common

Once you’ve become familiar with the use of the tags, scripts and objects these samples
illustrate, you can remove any or all of them, as you prefer.

28 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

FIGURE 1.2 Extend Scripts folder with SDK installed

Installing an Extension

To make an extension available to GoLive,

1. Quit GoLive if it is running.

2. Drag the extension’s folder from the Samples folder to the
Adobe GoLive 5.0/Modules/Extend Scripts folder.

To install all of the sample extensions, drag the entire contents of the Samples folder to the
Extend Scripts folder.

If you perfer not to install all of the sample extensions that the SDK provides, you can
install just the extensions shown in Figure 1.2 on page 28. Most of the code examples in
this book are based on this core set of extensions.

3. Start GoLive.

When GoLive starts up, it loads all of the extensions present in the subfolders of the Extend
Scripts folder. GoLive can load as many extensions as available RAM permits.

If you installed the core set of sample extensions that Figure 1.2 depicts, the GoLive menu
bar should now include the SDK Test menu shown in Figure 1.6.

FIGURE 1.3 GoLive menu bar with SDK installed

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 29

If the SDK Test menu is not present, try the following possible solutions:

● Make sure the Extend Script module is activated as described in “Enabling the Extend
Script Module” on page 26.

● Make sure the Menus and Dialogs example folder is in the
Adobe GoLive 5.0/Modules/Extend Scripts/ folder.

● Make sure the Menus and Dialogs folder holds a Main.html file.

NOTE: If these suggestions don’t resolve the problem, reinstall GoLive and the SDK.

Uninstalling an Extension

Take the following steps to remove an extension:

1. Drag the extension’s folder out of the Extend Scripts folder

2. Restart GoLive.

Configuring GoLive for Extend Script Development

Developing GoLive extensions is an iterative process that requires you to restart GoLive
whenever you need to load a new version of the extension you’re developing. In order to
reduce the time required for GoLive to start up, you can disable modules that your extension
does not use.

To disable a module,

1. Uncheck it in the Edit>Preferences…>Modules panel.

2. Restart GoLive.

The precise set of modules you can disable successfully depends on the features your
extension or site uses—you cannot disable a module your site or your extension requires for its
functionality. Here’s a suggested list of modules you might consider disabling to reduce
startup time during extension development:

NOTE: Do not disable the Extend Script module; if this module is not enabled, GoLive cannot
load or run Extend Script extensions.

For descriptions of these modules, see the “Adobe GoLive Module Reference” section of the
Adobe GoLive 5.0 User’s Guide.

Download Page Dynamic Link Network *

*Do not disable the Network module if any extension calls the get or put methods of the JSXFile
object.

Network Status

PNG Image Format QuickTime Module Site Design Smart Links

Smart Objects SWF Module WebDAV WebObjects

Encodings †

†Do not disable the Encodings module in Japanese versions of GoLive.

30 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Enabling the JavaScript Shell palette

One of the best ways to become familiar with the JavaScript environment in GoLive is to
experiment by entering JavaScript expressions into the JavaScript Shell palette . This window
provides a command line you can use to communicate interactively with the JavaScript engine
built into GoLive. If you’ve installed all of the samples provided by the SDK, the
Window>JavaScript Shell menu item should display a palette similar to the one Figure 1.4
depicts.

FIGURE 1.4 JavaScript Shell palette

For a more detailed description of this window, see “JavaScript Shell Palette” on page 115.
Later on in this chapter, “Executing JavaScript Code in the GoLive Environment” on page 33
describes the GoLive JavaScript environment in detail.

JavaScript Shell Palette Problems

If you get any kind of response from GoLive in the output view of the JavaScript shell palette
when you press the Enter key, you can skip this section. Both of the following problems are
resolved by enabling debugging in at least one module in the Extend Scripts folder

● If no currently-installed extension modules enable debugging services, the JavaScript Shell
item does not appear in the Window menu.

● If the JavaScript Shell palette was open when the last user session with GoLive ended, this
window is opened again the next time GoLive starts. In this case the JavaScript shell
window may be open but not responsive to input.

Look for the name of the current module in the lower-left corner. If no text appears there, no
modules currently enable debugging services. Debugging services are enabled when at least
one Extend Script module contains the debugger statement or the debug attribute to
<jsxmodule> tag.

NOTE: To enable debugging services quickly and easily, drag any of the sample extensions
supplied by the SDK into your GoLive>Modules>Extend Scripts folder and restart
GoLive.

Command line

Module name is
Output view Execution scope

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 31

Examining the Sample Extensions

The SDK provides examples of extensions that install a custom menu, custom menu items,
custom palette tabs, and custom palette objects. This section provides a brief overview of the
user features that the SDK sample extensions install in the GoLive environment.

Extensions to the Special Menu

The Markup Tree example installs custom Markup Tree and Selections items in the Special
menu, as Figure 1.5 illlustrates.These items are submenus that holds additional menu items, as
shown in Figure 1.5.

FIGURE 1.5 Markup Tree and Selections submenus of the Special menu

Custom Menus

The SDK Test menu is provided by the Menus and Dialogs sample extension. If you haven’t
done so already, take a moment now to experiment with the SDK Test menu and its menu items.

FIGURE 1.6 SDK Test menu

32 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Custom Palette Tabs and Custom Palette Items

The core set of sample extensions installs three new tabs in the Objects palette:

● The Custom Box example installs the Sample Tag tab and a palette item you can drag onto
the page to create an instance of a custom page element.

● The SSI example installs the Server Side Includes tab and several palette items you can drag
onto the page to add server-side includes to your site. Figure 1.7 depicts the Server Side
Includes tab and its associated palette items.

FIGURE 1.7 Server Side Incluldes palette tab and palette items

● The Dialog Editor example installs the Dialog Editor tab and several palette items you can
drag onto the page to create common dialog box controls such as buttons, checkboxes and
text fields. Figure 1.8 depicts the Dialog Editor tab and its associated palette items.

FIGURE 1.8 Dialog Editor palette tab and palette items

NOTE: A dialog created by the Dialog Editor sample is not a standalone extension—it is code
meant to be incorporated in an extension that displays the dialog as part of its user
interface. For more information on displaying dialogs, see Chapter 3, “Dialogs and
Palettes.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 33

Executing JavaScript Code in the GoLive Environment

GoLive provides two design features intended to minimize problems caused by misbehaving
JavaScript code.

● If the SDK detects an error in a drawing function, such as in the drawControl or drawBox
function, it does not call this function again until you close and reopen the document that
defines the function. Without this feature, an error in a drawing function would cause
GoLive to throw an endless stream of errors, because drawing functions are called
whenever a JavaScript object must be redrawn.

● You can specify the amount of time GoLive waits for JavaScript code to return control
before GoLive exits the current script unconditionally. Without this feature, an infinite loop
or other failure in JavaScript code could halt GoLive indefinitely.

Setting the JavaScript Timeout

By default, GoLive waits forever for a JavaScript function call to complete. If you are not
confident that a JavaScript function can complete its task in a reasonable amount of time, you
may prefer to specify the amount of time GoLive waits for a response from it. Each extension
can specify its own timeout that GoLive uses to execute that extension’s scripts.

To set the script execution timeout, add to your extension’s Main.html file a jsxmodule tag
that provides a timeout attribute. The value of this attribute is the number of seconds GoLive
waits for a script to return control before it exits the script. Values of 0 or false restore the
default behavior of never timing out.

<html>
<body>

// give scripts ten seconds to complete before unconditional exit
<jsxmodule timeout=10>

// scripts and SDK tags go here
</body>

</html>

NOTE: An external library that calls an Extend Script extension can specify a separate
temporary script execution timeout for each JavaScript call. For more information, see
the description of the JSAEval function in Appendix A, “Using External Libraries.

Accessing Page Elements From JavaScript

The JavaScript interface to GoLive provides access to page elements in a way that JavaScript
programmers will find familiar. However, the GoLive Extend Script SDK is also intended to
be useful to the C programmer who doesn’t want to dive too deeply into the fine print of
JavaScript. Thus most page elements in the GoLive environment can be accessed in multiple
ways. This section describes how GoLive generates the JavaScript representation of the
markup tags in a document, and various ways to access these objects from JavaScript.

34 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

JavaScript Objects in the GoLive Object Model

When GoLive reads an HTML document, it creates an internal representation of the tags in the
document and leaves the contents of the document unchanged. When GoLive interprets a
markup tag, it creates two sets of objects:

● An internal representation of the markup element that the tag and a particular set of
attribute values defines. This internal representation is not created in JavaScript and
JavaScript callers cannot access it directly.

● A set of JavaScript objects that provide access to the internal representation of the markup
element.

The JavaScript objects in this representation take the form of a binary tree of objects known as
the markup tree. Individual objects in the tree are called markup elements. The Javascript
expression document.element provides access to the Markup object that is the root of a
document’s markup tree.

At any time, changes to a document that holds a markup element can cause GoLive to discard
its internal data structures and generate new ones. This operation is called reparsing. Any of
the following situations can cause GoLive to reparse the document:

● Adding or deleting elements in a GoLive document window. The user or an extension can
add or delete elements.

● Adding or deleting pages to a site may potentially cause GoLive to reparse all of the
documents in a site.

● The programmatic actions of your extension or others can also change one or all
documents in a site in ways that require GoLive to reparse.

● Even simple user interaction with the window in which a document appears—for example,
resizing the document window in a way that changes the orientation of page elements—can
cause GoLive to reparse the document.

In the GoLive environment, JavaScript objects don’t hold any data or functionality themselves.
They simply enable JavaScript access to data or functionality that is actually provided by an
internal representation that GoLive maintains. Thus, it’s extremely important that you manage
JavaScript references to document objects correctly in order to avoid invalid object references
that reparsing operations may cause:

● Variables that hold object refrences must be reinitialized to reference current objects
whenever GoLive reparses the document holding the tags that define these objects. GoLive
reparses a document
– whenever the user changes it, or
– whenever GoLive or an extension calls the document’s reparse method.

● Avoid saving document references in global variables. Unless you maintain the reference
scrupulously and exercise extreme care in its use, it can outlive the document it references.

IMPORTANT: Variables holding JavaScript objects are invalid after the document is
changed. Whenever the document changes, you must reinitialize such
variables to reference current JavaScript objects.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 35

When GoLive reparses, it updates the JavaScript representation of the markup tree, but it may
not be able to update your variables that hold JavaScript objects. As a result, these saved
JavaScript objects may contain references to internal data structures that no longer exist. When
a JavaScript object attempts to access a nonexistent internal data structure, GoLive returns an
error.

Although the SDK authors have added numerous checks to avoid such crashes, performance
considerations make it impractical to validate every pointer in a large markup tree. Thus, to
preserve acceptable performance, you must take responsibility for using saved JavaScript
objects correctly.

In summary,

● If you created a JavaScript object yourself by using the new operator on its constructor, you
can save the object in a variable and use that variable as you would normally; however, you
must set this variable to null before GoLive unloads your extension. For more
information, see “Releasing Saved JavaScript References” on page 103.

● You must reinitialize your own references to automatically-generated JavaScript objects
whenever the document is reparsed. Attempting to use an invalid object reference causes
GoLive to return an error.

Name Property and Name Attribute

JavaScript objects representing most GoLive page or site elements can be retrieved by name. A
JavaScript object’s name corresponds to the value of the name attribute specified by the
markup element GoLive interpreted to create it.

Usually, the name property of an element’s corresponding JavaScript representation is
specified by the name attribute of the tag that caused GoLive to create the JavaScript object. If
you omit the name attribute from the tag, GoLive usually provides a default name attribute for
you; however, it is recommended that you choose your own names, if only for the convenience
of knowing exactly which name is associated with a particular object.

IMPORTANT: To ensure reliable name-based access to JavaScript objects, the name attribute
of each tag your extension uses must be unique within the JavaScript
namespace.

JavaScript Object Arrays

In addition to the access afforded by each JavaScript object’s unique name property, the global
namespace makes most objects available as the elements of various arrays it maintains in the
global namespace. For example, the global namespace contains an object named menus which
you can use to access all menus defined by all currently-active extensions.

Sub-elements are made available as the properties of a parent element; for example, a menu
item does not appear in the global namespace—it is a property of the menu in which it
appears. The parent menu may be accessed by means of its unique name attribute, or by means
of the menus object that GoLive always creates in the global namespace.

36 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Because array elements can be addressed by numeric index or by name, the following lines of
JavaScript are equivalent.

menus ["sample"].items ["item1"]
menus ["sample"].items [0]
menus ["sample"].item1
sample.item1

NOTE: Most of the arrays that the SDK provides are Collection objects; even though these
objects are arrays, their elements are not accessible by numeric index, only by name.

The menus array holds all of the menus and menu items added to GoLive by Extend Script
extensions. The following line of JavaScript retrieves the item1 menu item by name from the
sample menu, which it also retrieves by name.

menus ["sample"].items ["item1"]

The menus ["sample"] expression gets the menu named sample by name from the global
menus array. The sample menu’s items property holds the array of menu items. To retrieve the
item1 element from this array by name, we use the same technique we used to get the sample
element from the global menus array.

Alternatively, you can retrieve the item1 menu item as a property of the sample menu, as in
the next line of JavaScript.

menus ["sample"].item1

GoLive also makes each menu available as a JavaScript object in the global namespace; thus,
the following simple line of JavaScript provides yet another way to retrieve the first item in the
sample menu.

sample.item1

IMPORTANT: To avoid unpredictable results, the name of each element your extension
defines must be unique within the global namespace.

Comparing Objects

To ascertain an object’s identity, you can compare the value of its name property to a known
value, such as a string or a reference to a global object. For example, you could test the name
of a menu item in any of the following ways:

if (item.name == "item1")
if (item == menus ["sample"].items ["item1"])
if (item == sample.item1)

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 37

Anatomy of an Extend Script Extension

Each GoLive extension is defined by a Main.html file that resides in a subfolder of the Extend
Scripts folder. For example, each of the subfolders the SDK installs in the Extend Scripts
folder contains a Main.html file that defines an extension to the GoLive environment.

All external files the extension requires—images, plug-ins, and the like—must reside in the
same folder as the extension’s Main.html file; for example, in Figure 1.9, the Custom Box
extension’s folder holds external .gif and .jpg image files in addition to the extension’s
Main.html file.

FIGURE 1.9 Contents of the Custom Box sample extension

Your extension’s Main.html file holds any HTML and JavaScript necessary to define the
extension. At startup time, GoLive interprets these tags and scripts to create an extension in the
GoLive environment.

Most of the HTML in the Main.html file consists of special tags that the SDK provides. You
use these tags to define the extension’s menus, controls, inspectors, palettes and custom tags.
You can combine the special SDK tags with standard HTML tags as necessary.

The JavaScript code in the Main.html file consists of your own functions and your
implementations of GoLive Event-Handling Functions. GoLive calls these functions at
specific times to make your extension perform specific tasks. Your extension implements its
own versions of these functions to provide the functionality GoLive requires at these times.

GoLive calls most of these functions in response to user events. For example, when the user
interacts with an extension’s custom menu, dialog, or palette, GoLive calls the appropriate
event-handling function. If the extension provides that function, GoLive executes it; otherwise,
the extension ignores the call to that function. For example, when the user selects one of your
extension’s menu items, GoLive sends the menuSignal message to your extension, along with
some information describing the menu item chosen. If your extension provides a menuSignal
function, GoLive executes it in response to the user’s menu choice; if not, your extension
simply ignores the menuSignal message.

Now that you have an idea of how tags, scripts, and event-handling functions work together in
the GoLive environment, you’re ready to get down to the business of creating extensions.

38 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Creating An Extend Script Extension Module

This section describes how to create the file and folder structure GoLive expects Extend Script
extensions to have.

Creating the Extension Folder

Take the following steps to begin creating an extension:

1. Create a new folder to hold the extension’s files. The rest of this book refers to this folder as
the Extension Folder.

2. Give the extension folder a unique name.

3. Place the extension folder in the Adobe GoLive/Modules/Extend Scripts/ folder.

Creating the Main.html File

Every Extend Script extension takes the form of a Main.html file that resides in its own
uniquely-named folder in the Extend Scripts folder. You can take the following steps to create
the Main.html file for a new extension,

1. Create a text file named Main.html.

2. Place the Main.html file in its own uniquely-named folder inside the Extend Scripts folder.

3. Add the following text to the file:

// Skeleton of the Main.html file
<html>

<body>
// Tags that define your menu & menu items will go here.

</body>
</html>

Like any HTML file, its first tag must be the <HTML> tag, and its last tag the </HTML> tag.

The HTML that defines your extension will reside in the body of the Main.html file, so
you’ll need to add a <BODY> tag just after the <HTML> tag. Of course, you also need to add
the closing </BODY> tag just before the closing </HTML> tag.

4. Save the file.

Now this file is ready to hold the tags and scripts that define your extension.

This set of instructions describes a minimal Main.html file that could be created in a simple
text editor. If you use GoLive to create your Main.html file, you’ll also see <META> tags and a
default <TITLE> element in the HTML files it creates. To specify the file GoLive uses as the
template for a new document, check the New Document… checkbox in the
Edit>Preferences>General panel, then click the Select… button to specify the file.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 39

Adding SDK Tags and JavaScript Functions to the Module

To create a GoLive extension, you’ll add tags and scripts to the body of a Main.html file
created as described in “Creating An Extend Script Extension Module” on page 38.

For a tutorial that describes how to add a custom menu to the GoLive menu bar, see the first
part of “Custom Menus” on page 41. Even if you don’t plan on adding a custom menu to
GoLive, you should read this tutorial to gain an understanding of how to use tags and scripts to
create a simple extension.

After you’ve read (or, ideally, worked through) this material, you should be able to use any
other section of the book as needed to meet your extension development goals.

40 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 41

2 Menus

This chapter describes how you can use the GoLive Extend Script SDK to perform tasks such
as

● Creating a custom menu
– Displaying an alert
– Put up a dialog that displays an external graphic or custom text, perhaps using custom

fonts, colors, and so on.

● Adding custom menu items to the Special menu

● Adding submenus

● Assigning keyboard shortcuts to custom menu items

● Setting the enabled state of a menu item

● Setting the checked state of a menu item

Pop-up menus, which appear in dialog windows, are described in “Defining Dialog Content”
on page 55.

Custom Menus

This section describes the steps required to add a custom menu to the GoLive design
environment:

● Adding the Menu Bar Tag

● Defining the Menu

● Defining Menu Items

● Implementing the menuSignal Function

These required steps are presented in tutorial fashion; once you’ve read (or, ideally, worked
through) these sections, you should be able to skip to other parts of the book as needed to meet
your extension development goals.

Subsequent sections in this chapter describe the following optional topics:

● Multiple Custom Menus

● Submenus

● Setting A Menu Item’s Checked State Explicitly

● Setting a Menu Item’s Enabled State Explicitly

● Setting The State of A Menu Item Automatically

42 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Overview

You can define a custom menu like the one in Figure 2.1 using only three tags and one
JavaScript function:

● The jsxmenubar tag wraps the definition of all the HTML that adds menus to the GoLive
menu bar.

● The jsxmenu tag defines a custom menu that appears to the left of the Window menu in the
GoLive menu bar.

● The jsxitem tag defines a custom menu item that appears in a custom menu.

● The menuSignal function performs the menu item’s task.

FIGURE 2.1 The Hello, GoLive! menu

Adding the Menu Bar Tag

The <jsxmenubar> opening tag must precede all of the tags that define custom menus and
custom menu items. Similarly, the </jsxmenubar> closing tag must close the HTML that
defines custom menus and custom menu items. After you’ve added these tags, your Main.html
file should look like the following example.

// Main.html file for menu example
<html>

<body>
<!-- The Hello GoLive Menu ------------------->

<jsxmenubar> // opens definition of all menus and menu items
// Tags that define your menu & menu items will go here.

</jsxmenubar> // closes definition of all menus and menu items
</body>

</html>

Defining the Menu

Inside the <jsxmenubar></jsxmenubar> tags, you’ll add the jsxmenu tag that defines the
name of your custom menu. This tag is a binary tag; that is, it consists of an opening tag and a
closing tag. Its syntax looks like this:

<jsxmenu name="name" title="Menu text"></jsxmenu>

The title property specifies the menu’s title in the GoLive menu bar, while the name property
specifies the name used to access the menu in the JavaScript namespace. Thus, the following
tag defines that portion of the menu that appears in the menu bar.

<jsxmenu name="Hello" title="Hello, GoLive!"></jsxmenu>

If you omit the name property or neglect to supply a value for it, GoLive uses the value of the
title property as the default value of the name property.

<jsxmenu>
<jsxitem>

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 43

With the top level of your menu defined, your Main.html file should now look like the
following example.

// Main.html file for Hello example
<html>

<body>
<!-- The Hello GoLive Menu ------------------->

<jsxmenubar> // opens definition of all menus and menu items
<jsxmenu name="Hello" title="Hello, GoLive!"></jsxmenu>

// Tags that define your menu items will go here.
</jsxmenubar> // closes definition of all menus & menu items

</body>
</html>

Now you’re ready to add the tags that define this menu’s menu items.

Defining Menu Items

The <jsxmenu></jsxmenu> tags enclose one or more <jsxitem > tags. Each <jsxitem> tag
defines a menu item that is to appear in the custom menu. The syntax line for this tag looks
like the following example.

<jsxitem name="name" title="Item text" key = "text" dynamic>

The name property specifies this object’s identifier in the JavaScript namespace, while the
title property specifies the text that appears as the menu item.

The optional key attribute is described later in this chapter, in “Assigning Keyboard Shortcuts
To Menu Items” on page 45. The optional dynamic attribute is described later in this chapter,
in “Setting The State of A Menu Item Automatically” on page 49.

The following example defines two custom menu items.

<jsxitem name="doThis" title="Do Something">
<jsxitem name="doThat" title="Do Something Else">

The menu items appear in the menu in the same order that their definitions appear in the
Main.html file. After adding the menu items, the Main.html file should resemble the
following example.

// Main.html file for Hello example
<html>

<body>
<!-- The Hello GoLive Menu ------------------->

<jsxmenubar> // opens definition of all menus
<jsxmenu name="Hello" title="Hello, GoLive!"> // Hello menu

<jsxitem name="doThis" title="Do Something"> // menu item
<jsxitem name="doThat" title="Do Something Else” > menu item

</jsxmenu> // closes definition of Hello menu
</jsxmenubar> // closes definition of all menus

</body>
</html>

44 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

To admire the fruits of your labor thus far, save and close the Main.html file. The next time
you start GoLive, you should see the menu that Figure 2.1 depicts; however, its menu items
won’t do anything until you write a menuSignal function that GoLive can call when the user
chooses one of these menu items.

Implementing the menuSignal Function

When the user chooses a menu item, GoLive calls that menu’s menuSignal function. This
section describes how to write a menuSignal function that takes action in response to the
user’s choice of a menu item.

function menuSignal(menuItem)
{

// code that acts on the user’s choice of menu item
}

To determine which menu item the user chose, your menuSignal function can test the name
property of the jsxitem object that GoLive passes as the argument to this function. The dot
operator (.) provides access to the properties of a jsxitem object, just as it does for other
JavaScript objects. Thus, to retrieve the name of the menu item the user chose, your
menuSignal function can use the menuItem.name expression. The example menuSignal
function immediately following uses the menuItem.name expression as the case expression of
a switch statement that varies its actions according to the menu item the user chose.

function menuSignal(menuItem)
{

switch (menuItem.name)
{

case "doThis":alert("You chose the Do Something item.");
break;

case "doThat":alert("You chose the Do Something Else item.");
break;

default:alert ("Something went wrong...");
}

}

Because displaying an alert is one of the easiest things you can do with GoLive from
JavaScript, each case in this example menuSignal function displays an alert that simply names
the menu item chosen, as shown in Figure 2.2.

FIGURE 2.2 Alerts displayed by the Hello example

The menuSignal function must reside within a <SCRIPT></SCRIPT> tag.

IMPORTANT: Each Main.html file can contain only one set of <SCRIPT></SCRIPT> tags.
All of your extension’s scripts must reside within these tags.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 45

Your completed Main.html file that defines the Hello, GoLive! menu should resemble the
following example.

<html>
<body>

<script>

function menuSignal(menuItem)
{

switch (menuItem.name)
{
case "doThis":alert("You chose the Do Something item.");

break;
case "doThat":alert("You chose the Do Something Else item.");

break;
default:alert ("Something went wrong...");
}

}

</script>

<!-- The Simplest Menu ------------------->

<jsxmenubar>
<jsxmenu title="Hello, GoLive!">

<jsxitem name="doThis" title="Do Something">
<jsxitem name="doThat" title="Do Something Else">

</jsxmenu>
</jsxmenubar>

 </body>
</html>

If you’ve read or worked through this entire Custom Menus section to this point,

● You have now seen all of the tags and functions required to create a custom menu

● You’ve seen how to use SDK-provided tags and functions to create a simple extension.

● You can skip to any section in the remainder of this book that suits your extension
development goals.

The remainder of this chapter describes optional topics related to custom menus.

Assigning Keyboard Shortcuts To Menu Items

You can use the optional key attribute to the jsxitem tag to assign keyboard shortcuts to your
menu items. To specify modifier keys, use the identifiers Ctrl, Shift, Alt, Opt, or Cmd as
required. For example, the first line in the following example assigns the Ctrl-Shift-D keystroke

46 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

to the Do Something menu item, while the second line assigns the Alt-E keystroke to the Do
Something Else menu item.

<jsxitem name="doThis" title="Do Something" key = "Ctrl+Shift+D">
<jsxitem name="doThat" title="Do Something Else" key = "Alt+E">

GoLive remaps platform-specific modifier keys as Table 2.1 specifies. For example, GoLive
treats the Windows platform’s Alt keystroke as the Option keystroke on Mac OS platforms.
Similarly, GoLive treats the Mac OS Cmd keystroke as the Ctrl keystroke on Windows
platforms.

TABLE 2.1 Translation of Modifier Keys to Alternate Platforms

Using the ampersand (&) character in menu titles forces Windows platforms to underline the
character that follows it, indicating to the user that the character is used as a hot key. On the
Macintosh, these ampersand characters are removed from the string so they do not display. To
display the ampersand itself on Windows, use two consecutive ampersands. When reading the
title property, the ampersand characters are always removed from the original string to
preserve compatibility across operating systems. For example, if you assign the string "&New"
to the title property of a menu item it displays as New on Windows platforms and displays as
New on Mac OS platforms. The value of the title property is "New" as retrieved from the menu
item object.

If you assign a keyboard shortcut that is already is use by another menu item, results are
unpredictable. You can take either of the following approaches to work around the problem:

● Change the conflicting shortcut in your extension’s source code
– Assign a new value to the conflicting key attribute in your extension’s Main.html file.
– Restart GoLive with the new Main.html file in the Extend Scripts folder

● Change the conflicting shortcut in the Edit>Keyboard Shortcuts dialog.

IMPORTANT: The Keyboard Shortcuts dialog records all shortcuts it finds on disk. When you
use this dialog to change the order of menu entries, existing shortcuts may be
corrupted. To restore the original mappings of keystroke shortcuts, you must
erase the Adobe Golive 5.0 Preferences file.

On MacOS systems, the preferences file is located at
System Folder: Preferences: Adobe GoLive 5.0 Prefs

On Windows 98 platforms, the preferences file is located at
C:\\WINDOWS\Application Data\Adobe\Adobe Golive\PrefFile.prf

Modifier Key (Native Platform) Mac OS platforms Windows platforms

Control/Ctrl (Windows) Cmd Ctrl

Command (Mac OS) Cmd Ctrl

Alt (Windows) Opt Alt

Option (Mac OS) Opt Alt

Shift Shift Shift

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 47

On Windows NT platforms, the preferences file is located at

C:\WINNT\Profiles\UserName\Applications\Data\Adobe\Adobe Golive\PrefFile.prf

Multiple Custom Menus

GoLive adds custom menus to the menu bar at the left of the Window menu. You cannot
specify the order in which GoLive loads multiple custom menus; however, the items in a menu
always appear in the order the Main.html file defines them.

Submenus

You can also use the jsxmenu element to define a submenu—just place the submenu’s
<jsxmenu> element amongst the <jsxitem> tags that define the menu’s items, as the
following example does

<!-- Submenu Example ------------------->

<jsxmenubar>
<jsxmenu name="HelloMenu" title="Hello, GoLive!">
<jsxitem name="doThis" title="Do Something" dynamic>
<jsxitem name="doThat" title="Do Something Else">

<jsxmenu name="subMenu" title="Submenu">
<jsxitem name="toggle" title="Toggle Check for Subitem 2">
<jsxitem name="sub2" title="Subitem">
<jsxmenu name="anotherSubMenu" title="Yet Another Submenu">

<jsxitem name="anotherSubItem" title="Another Subitem">
</jsxmenu>

</jsxmenu>
</jsxmenu>

</jsxmenubar>

The submenu can include menu items that are themselves submenus. This code example
produces the menu hierarchy that Figure 2.3 depicts.

FIGURE 2.3 Submenu with its own submenu

48 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Setting A Menu Item’s Checked State Explicitly

You can set a jsxitem object’s checked property to specify whether GoLive is to place a
check mark next to the object’s corresponding menu item. A value of true specifies that the
menu item has a check mark, as the Subitem menu item in Figure 2.3 does. In the following
example menuSignal function, the toggle case sets this property to its opposite value each
time the user chooses the Toggle Check for Subitem 2 menu item.

<!-- Check mark Example ------------------->

<jsxmenubar>
<jsxmenu title="Hello, GoLive!">

<jsxitem name="doThis" title="Do Something">
<jsxmenu name="subMenu" title="Submenu">

<jsxitem name="toggle" title="Toggle Check for Subitem 2">
<jsxitem name="sub2" title="Subitem">

</jsxmenu>
<jsxitem name="doThat" title="Do Something Else">

</jsxmenu>
</jsxmenubar>

function menuSignal(menuItem)
{

switch (menuItem.name)
{

case "doThis":alert("You chose the Do Something item.");
break;

case "doThat":alert("You chose the Do Something Else item.");
break;

case "toggle":subMenu.sub2.checked = !subMenu.sub2.checked;
break;

default:alert ("Something went wrong...");
}

}

When the user chooses a menu item, GoLive passes the associated jsxmenuitem object to the
menuSignal function defined by the extension that defined the menu item. If the value of the
object’s name property is toggle, this code retrieves the menu item by name from the global
namespace and sets the value of its checked property to the opposite of its current value.

Setting a Menu Item’s Enabled State Explicitly

You can set a jsxitem object’s enabled property to specify whether the menu item is enabled
or disabled. Figure 2.4 depicts an enabled menu item, which is drawn in black and can be
chosen by the user. It also illustrates a disabled menu item, which is drawn in gray and cannot
be chosen by the user.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 49

FIGURE 2.4 Enabled and disabled menu items

The following code example creates the menu items that Figure 2.4 depicts. This example sets
each jsxmenuitem object’s enabled property explicitly to enable or disable the menu item it
defines.

<!-- Enable/Disable Example ------------------->

<jsxmenubar>
<jsxmenu title="My Menu">

<jsxitem name="enableItem" value="Enabled">
<jsxitem name="disableItem" value="Disabled">

</jsxmenu>
</jsxmenubar>

<script>
<!-- //hide from old browsers

MyMenu.disableItem.enabled = false;

// End of hiding scripts from old browsers-->
</script>

As you can see by the boldfaced lines above, this script simply accesses the Disabled menu
item in the global namespace to set its enabled property. Because GoLive normally enables
menu items by default, you need not set a menu item’s enabled property to ensure that it is
enabled. (Unless, of course, you’ve disabled it previously.)

In order to show clearly the techniques for enabling and disabling menu items, the preceding
examples are somewhat oversimplified. Usually, you’ll condition a menu item’s enabled state
on some prerequisite; for example, the File>Close Window menu item in GoLive is enabled
only when a GoLive document window is open. Similarly, you’ll condition a menu item’s
checked state on whether the behavior it provides is currently in effect; for example, the
Window menu in GoLive places check marks next to the names of windows that are currently
open.The next section shows how you can make GoLive set the states of your menu items
automatically according to criteria you specify.

For information on testing for the presence of a document or its elements, see Chapter 5,
“Manipulating Document Objects.”

Setting The State of A Menu Item Automatically

The valueless dynamic attribute of the <jsxitem> tag marks its menu item as one that GoLive
must initialize before displaying the menu. Each time the user attempts to open a menu defined
by an extension, GoLive passes to the extension’s menuSetup function each of the menu’s
items that have the dynamic attribute. The menuSetup function can then initialize the item for
display, setting, for example, its checked state, its enabled state, and its initial value.

active or enabled—can be selected
inactive or disabled—cannot be selected

50 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The following example marks both menu items as requiring dynamic initialization.

<jsxmenubar>
<jsxmenu name="BGColr" title="Background">

<jsxitem name="bgcolred" title="Set BG Red" dynamic>
<jsxitem name="bgcolgrn" title="Set BG Green" dynamic>

</jsxmenu>
</jsxmenubar>

The next example shows one way you might implement the menuSetup function for the
extension that defines these menu items. This function sets the enabled and checked states of
the menu item passed to it according to whether the current document’s background color is
red, green, or some other color. Like the menuSignal function discussed earlier in this chapter,
the menuSetup function uses the passed menu item’s name attribute as the case expression of a
switch statement that customizes the function’s actions according to the particular menu item
passed to it.

function menuSetup(menuItem) {
// begin with menu item unchecked
menuItem.checked = false;
// disable dynamic menu items if no document or no element
menuItem.enabled = (document != null && document.element != null);
// set enabled & checked states according to background color
var tree = document.element;
var bodyElement = tree.getSubElement("body");
switch (menuItem.name) {

 case "bgcolred":
 if (bodyElement)
 {
 // allow user to change color to red if isn't red now
 menuItem.enabled = (bodyElement.bgcolor != "red")
 // place checkmark next to menu item if bgcolor is red now
 menuItem.checked = (bodyElement.bgcolor == "red")
 }

break;
 case "bgcolgrn":
 if (bodyElement)
 {
 // allow user to change color to green if isn't green now
 menuItem.enabled = (bodyElement.bgcolor != "green")
 // place checkmark next to menu item if bgcolor is green now
 menuItem.checked = (bodyElement.bgcolor == "green")
 }

break;
}

}

Most of this code simply repeats techniques used earlier in this chapter; however, the code that
tests the current background color of the active document deserves further scrutiny.

When GoLive interprets a document, it generates a tree of markup elements that correspond to
the HTML elements the document defines. Each markup element takes the form of a set of
C++ objects GoLive maintains internally, as well as a set of objects that make this internal

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 51

representation available in the JavaScript environment. To modify the active document, you
use the properties and methods of JavaScript objects that the markup tree provides.

The global document object represents the currently-active GoLive document window. The
element property of this object is a reference to the root of the markup tree GoLive generated
when it read this document. Thus, the following code retrieves the active document’s markup
elements and stores them in the tree local variable.

var tree = document.element;

The tree variable actually holds the root of the markup tree, which is a special element
intended for use only by GoLive itself. The markup elements defined by the document’s
HTML code—such as its head and body elements—are subelements of this root object. To
modify the background color of the document, you must access the document’s body element.

Each markup element provides a getSubElement method you can use to retrieve a particular
element by name; thus, to retrieve the document’s body element, simply pass its name to the
getSubElement method of the tree object, as the following code does.

var bodyElement = tree.getSubElement("body");

The markup tree provides programmatic access to virtually every element of an active
document; later on in this book, the Custom Elements and Manipulating Document Objects
chapters discuss this subject in detail.

Adding Items to the Special Menu

To append your own menu items to the Special menu, place your <jsxitem> tags inside a
<jsxmenu> element that specifies a value of "special" for its name attribute, as the following
example does.

<jsxmodule name="DynamicMenus">
<jsxmenubar>

<jsxmenu name="special">
<jsxitem name="one" title="Special One" dynamic>
<jsxitem name="two" title="Special Two">
<jsxitem name="three" title="Special Three">

</jsxmenu>
</jsxmenubar>

When GoLive adds multiple custom items to the Special menu, their order in the menu reflects
the order in which GoLive loaded the modules that define the menu items, as well as the order
in which each extension’s Main.html file defines them when read top to bottom. You cannot
control the order in which GoLive loads modules, but your menu items will always appear in
the order that the Main.html file defines them.

As you can see in Figure 2.5, the Special One , Special Two , and Special Three menu items this
code defines appear at the bottom of the Special menu. Note the presence of the XML Tree and

52 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Selections submenus, which were loaded first because the name of the module that defines
them, DOM, precedes the name of the DynamicMenus module in alphabetic order.

FIGURE 2.5 Custom items appended to the Special menu

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 53

3 Dialogs and Palettes

The GoLive Extend Script SDK provides tags you can use to create two kinds of windows:

● A modal window, also known as a modal dialog box
– Requires a response before allowing the user to proceed.
– Does not provide a close box; instead it provides a control, such as a button, that can

dismiss the dialog.

The alert dialogs shown in Figure 2.2 on page 44 are examples of modal windows.

● A modeless window, also known as a palette
– Floats above open document windows without requiring a user response.
– Is never terminated but can be hidden.
– Is hidden until the user selects it in the Window menu.

The Objects palette and the Inspector window are examples of modeless windows.

This chapter describes how to create these kinds of windows. Topics this chapter describes
include

● Defining the Modal Dialog Window

● Defining Dialog Content

● Displaying the Dialog

● Implementing the controlSignal Function

● Floating Palettes

Modal Dialog Windows

This section describes the steps required to display a modal dialog window:

● Defining the Modal Dialog Window

● Defining Dialog Content

● Displaying the Dialog

Optionally, you can cause the dialog to respond to controls other than buttons that dismiss the
dialog; for detaills, see “Implementing the controlSignal Function” on page 60.

54 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Defining the Modal Dialog Window

The jsxdialog element defines the modal dialog window itself. You’ll use other tags to define
window content such as text and buttons.

<jsxdialog name="objectName" title="Title On Windows OS" width="anInteger"
height="anInteger" >

</jsxdialog>

This tag specifies the following attributes:

The element that defines an empty modal dialog window would look like the following
example. This example is not meant to be a complete example of all the code required to create
a dialog—it’s just meant to show how the <jsxdialog> tag is used. The definition of any
<jsxdialog> must always include at least one <jsxcontrol> that can dismiss the dialog;
otherwise, the user cannot exit the dialog.

<jsxdialog name="testDialog" title="Test Dialog" width="215" height="200">
// jsxcontrol tags defining content such as text & controls go here

</jsxdialog>

IMPORTANT: Every jsxdialog element must contain at least one jsxcontrol element that
can dismiss the modal dialog; otherwise, the user cannot exit the dialog.

The next section describes the use of the <jsxcontrol> tag to define the content of the modal
dialog, including the all-important control that can dismiss the dialog.

name The name under which the dialog’s JavaScript
representation appears in the global namespace. GoLive
also makes the dialog available via the dialogs array it
maintains in the global namespace.

title The dialog window’s title when displayed on Windows
platforms. Not used on Mac OS platforms. (Mac OS dialog
boxes do not have titles.)

width Width of the dialog; can be overridden by an embedded
<table> tag.

height Height of the dialog; can be overridden by an embedded
<table> tag.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 55

Defining Dialog Content

The <jsxcontrol> tag can define a variety of control objects—the value of its type attribute
specifies whether it defines a pushbutton, a checkbox, a radio button, various text fields,
various popup menus, or a custom control of your own design.

<jsxcontrol type="KindOfControl" name="JavaScriptName"
value="InitialValue" posx="NumOfPixels" posy="NumOfPixels"
width="NumOfPixels" height="NumOfPixels"
halign="SeeReference" valign="SeeReference" >

All attributes other than halign and valign are required.

All jsxcontrol objects provide certain common behaviors, such as the ability to draw
themselves in the location you specify. They also have certain common attributes, such as
those which specify the control’s position. Any of your <jsxcontrol> tags can define these
attributes, and your JavaScript code can get or set their corresponding properties in the
jsxcontrol objects these tags create.

Each type of control object also provides its own specialized attributes and functions that other
types of control objects don’t provide; for example, text-entry fields can capture keystrokes,
but radio buttons cannot. If your JavaScript code tries to set the value of an attribute or
property that does not apply to the control it is trying to set, the control ignores the non-
applicable input. For example, if you write a JavaScript statement that tries to set the
itemCount property of a radio button, the control ignores the statement because radio buttons
have no such property. Similarly, if your script tries to call a function that the control does not
supply, the control ignores the statement. For example, if you try to call the addItem function
of any control other than a popup menu, GoLive ignores the addItem function call.

The value of the type attribute must be one of those listed in jsxcontrol on page 122. As
mentioned previously, the type attribute specifies the kind of control this tag creates; thus,
each type value specifies a particular customized appearance, behavior, and set of JavaScript
properties and functions for the jsxcontrol object that GoLive creates as the result of
interpreting the <jsxcontrol> tag. For example, a jsxcontrol of type button provides the
appearance and behaviors of a pushbutton.

A modal dialog does not provide a close box; to close a modal dialog window, you must
implement one or more controls that can dismiss the dialog. The control that dismisses the
dialog does not need to be a pushbutton. The SDK provides two ways to dismiss a dialog:

● Any control created with a name attribute of dialogok, dialogcancel, or dialogother
closes the dialog when the user clicks it. A control having any other value as its name
attribute does not dismiss its dialog.

● The exitModal method of the Dialog Object dismisses the dialog unconditionally. The
argument to this method specifies the value that the runModal method returns when it exits.

56 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The value attribute specifies only the initial value of the object a <jsxcontrol> tag creates,
not the final value the control returns to GoLive when the user changes the control’s state. A
pushbutton control’s final value is always the same as its initial value, but this is not always so
for other control types, such as popup menus.

The posx and posy attributes specify the control’s placement in the modal dialog. These
attributes define an (x,y) coordinate pair that specifies the location of the control’s upper-left
corner within the coordinate plane having its origin at the upper-left corner of the dialog. The
values of posx and posy are specified in pixels.

FIGURE 3.1 Positioning controls in dialog’s coordinate plane

The width and height attributes specify the dimensions of the control in pixels.

The optional halign and valign attributes specify how the control positions itself when its
containing window is resized; because the user cannot resize a modal dialog, this section does
not discuss these attributes.

Creating A Cancel Button

A jsxcontrol of type button with name dialogcancel is a pushbutton that closes its dialog.
The following example uses the <jsxcontrol> tag to define a Cancel button resembling the
one Figure 3.2. depicts.

<jsxcontrol type="Button" name="dialogcancel" value="Cancel"
posx="80" posy="138" width="60" height="18">

</jsxcontrol>

(0,0)

(280,400)

(280,0)

(0,400)

increasing values of x

increasing values of y

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 57

Creating An OK Button

The following HTML example uses the <jsxcontrol> tag to define an OK button. GoLive
recognizes a jsxcontrol of type button with name dialogok as a button that closes the
dialog when the user clicks it. Additionally, this button has a special outlined appearance that
identifies it as

● the default choice in the dialog

● the button that is clicked when the user presses either of the Return or Enter keys.
<jsxcontrol type="Button" name="dialogok" value="OK"

posx="80" posy="138" width="60" height="18">
</jsxcontrol>

When GoLive interprets the jsxcontrol tag in this example, it creates a button resembling the
OK button in Figure 3.2.

FIGURE 3.2 Type attribute specifies appearance and behavior of jsxcontrol object

Creating Other Kinds of Controls

The following example illustrates the use of the <jsxcontrol> tag to create the static text,
editable text, checkboxes, radio buttons, a popup menu, and color picker shown in the dialog
box Figure 3.2 depicts. For many additional examples of the use of controls, see the sample
code that the SDK provides.

type="checkbox"

type="radiobutton"

type="popup"

type="editarea"

type="edit"

type="static"

type="buttonedit"

type="Button"

name="dialogok"name="dialogother"

type="color"

name="dialogcancel"

58 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

// example of using <jsxcontrol> to create various kinds of controls
<jsxdialog name="myModalDialog" title="Burger Order Form" width="280" height="400" >

<jsxcontrol type="static" name="trimmingsPrompt"
value="Which trimmings would you like on your burger?"
posx="10" posy="10" width="240" height="18">

<jsxcontrol type="checkbox" name="lettuceBox" value="Lettuce"
posx="10" posy="30" width="60" height="18">

<jsxcontrol type="checkbox" name="tomatoBox" value="Tomato"
posx="80" posy="30" width="60" height="18">

<jsxcontrol type="checkbox" name="pickleBox" value="Pickle"
posx="150" posy="30" width="60" height="18">

<jsxcontrol type="checkbox" name="onionBox" value="Onion"
posx="220" posy="30" width="60" height="18">

<jsxcontrol type="static" name="cookingPrompt"
value="How would you like it cooked?"
posx="10" posy="60" width="200" height="50">

<jsxcontrol type="radiobutton" name="rareRadio" value="Raw"
posx="10" posy="80" width="60" height="18" group = "cookBtn">

<jsxcontrol type="radiobutton" name="medRadio" value="Pinkish"
posx="70" posy="80" width="60" height="18" group = "cookBtn">

<jsxcontrol type="radiobutton" name="wellRadio" value="Burnt"
posx="140" posy="80" width="60" height="18" group = "cookBtn">

<jsxcontrol type="static" name="bunPrompt" value="On which kind of bread?"
posx="10" posy="110" width="300" height="18">

<jsxcontrol type="popup" name="breadMenu"
value="Baguette, Pita, Rye, Sourdough, Wheat"
posx="10" posy="135" width="90" height="18">

<jsxcontrol type="edit" name="custNameField" value="Type your name here"
posx="10" posy="170" width="150" height="18">

<jsxcontrol type="buttonedit" name="phoneField"
value="Please type phone number and press Enter"
posx="10" posy="200" width="200" height="18">

<jsxcontrol type="editarea" name="commentField" value="Your comments please"
posx="10" posy="230" width="200" height="60">

<jsxcontrol type="static" name="chipsPrompt"
value="Click the Change button to change the color of the box."
posx="10" posy="304" width="300" height="18">

<jsxcontrol type="color" name="color" posx="10" posy="330" width=30 height=19>
<jsxcontrol type="Button" name="dialogOther" value="Change"

posx="10" posy="365" width="60" height="18">
 <jsxcontrol type="Button" name="dialogcancel" value="Cancel"

posx="80" posy="365" width="60" height="18">
<jsxcontrol type="Button" name="dialogok" value="OK"

posx="153" posy="365" width="60" height="18">
</jsxdialog>

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 59

Displaying the Dialog

To display a modal dialog, call the jsxdialog object’s runModal function. When the
runModal function completes, it returns one of the following values:

Your extension uses this return value to take appropriate action; for example, if the runModal
function returns the dialogok value, your extension would accept the current values of the
controls in the dialog as valid user input. On the other hand, if the runModal function returns
the dialogcancel value, your extension would discard the user’s input to the dialog.

The following example shows different ways to use the runModal function’s result.

function MenuSignal(menuItem){
switch(menuItem.name){

// how to call runModal for simple Cancel/OK dialog
case "mySimpleDialog":{

if (myOtherDialog.runModal())
alert("That was a wise decision!"); break;

else
alert ("Are you sure you want to cancel?"); break;

}
// how to call runModal for multi-button dialog
case "myRegDialog":
{// shareware registration dialog example

switch (myRegDialog.runModal()) {
case "dialogok":

// accept user input
var userName = myDialog.myNameField.value;
var credit = myDialog.myCreditCardField.value;
break;

case "dialogcancel":
// restore defaults
myDialog.myNameField.value = "";
myDialog.myCreditCardField.value = "";
break;

case "dialogother":
// a third alternative
myDialog.myNameField.text = "Demo User";
myDialog.myCreditCardField.value = "DEMO DEMO DEMO DEMO";
setUpAsDemoVersion();
break;

} // end switch
} // end myRegDialog case

}
}

dialogcancel 0 User clicked the Cancel button.

dialogok 1 User clicked the OK button.

dialogother 2 User interacted with a control other than the OK or Cancel buttons.

60 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

For a dialog that allows the user only to accept or reject the choice it offers, you can use the
straightforward approach that the mySimpleDialog case takes. Because dialogCancel actually
is the value zero, you can treat non-zero results from the runModal function as the boolean
value true .

For a dialog that offers several exit points, you’ll need to take the approach demonstrated by
the myRegDialog case—it uses the runModal function’s return value as the case expression in
a switch statement that customizes its actions according to the button that dismissed the
dialog.

After the dialog closes, all of its jsxcontrol objects remain available in the JavaScript
namespace; as a result, retrieving the current control settings or restoring default values is
straightforward.

Implementing the controlSignal Function

If the only information GoLive needs from your dialog is whether the user accepts or rejects
the information it displays, you don’t need to use the controlSignal function. You can
determine whether the user clicked OK, Cancel, or something else by examining the value that
the runModal function returns. However, if you need to respond to changes in the state of a
jsxcontrol object while a modal or modeless dialog is displayed, you can use the optional
controlSignal function to do so; for example, you would use this function to update the
appearance of an element in response to changes in the value of a control.

Whenever the user changes the state of a control created by the jsxcontrol tag, GoLive
passes the control to the controlSignal function of the extension that displayed the control.
Your implementation of this optional function takes any action necessary to respond to the
change in the control’s state.

Typically, this function tests the name attribute of the control passed as its argument, using
control.name as the case expression of a switch statement that customizes this function’s
actions for various controls.

Here’s a simple example of a controlSignal function that you could use to add functionality
to the dialog shown in Figure 3.2. When the user clicks the Change button, this
controlSignal function’s dialogOther case changes the color of the color control. For all

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 61

other non-dismissing controls, the default case prints an informative statement to the
Javascript Output palette.

function controlSignal(control)
{

switch (control.name)
{

case "dialogOther": var currColor = myModalDialog.color.value
if (currColor == "red")
 myModalDialog.color.value="green"
else

 myModalDialog.color.value="red"
break;

case "aNother":// each case responds to a specific control
break;

default:writeln (control.name + " selected.");
}

}

Floating Palettes

The <jsxpalette> tag creates a floating window with its own pull-down menu, like the one
Figure 3.3 shows.

FIGURE 3.3 Modeless dialog, floating window, or palette

The palette window’s title appears in the Window menu; for example, the palette that
Figure 3.3 depicts places the Script Palette item in the Window menu. A palette window always
runs while GoLive is running; when the user clicks its close box, GoLive hides the palette
from the user but the palette actually continues to run.

A jsxpalette element looks like the following example.

<jsxpalette name="objectName" title="TitleOfPalette" order="anInteger"
width="anInteger" height="anInteger" >

// for palette menu, add <jsxmenu> and <jsxitem> elements here
</jsxpalette>

The name, width, and height attributes to the <jsxpalette> opening tag act as their
counterparts in other tags do.

62 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The title attribute defines the palette’s title as it appears in the Window menu and on the tab
of the palette window.

The order attribute determines the position in which this palette’s title attribute appears in
the Window menu. Higher values of the order attribute place the palette’s title closer to the
bottom of the Window menu in the GoLive design environment. Values greater than 9999
produce undefined results.

The following example creates the palette shown in Figure 3.3.

<!-- Palette ------------------->
// menuorder is at the end of the Objects group (0101)
<jsxpalette name="JSXPalette" title="Script Palette" order=0151

width="215" height="164">
<jsxcontrol type="custom" name="custom" posx="10" posy="10"

width="112" height="32">
<jsxcontrol type="Button" name="button" value="Hello?"

posx="48" posy="96" width="112" height="32">

<!-- Palette Menu ------------------->

<jsxmenu name="firstMenu" title="test">
<jsxitem name="item1" title="Item 1" dynamic>
<jsxitem name="item2" title="Item 2">
<jsxitem name="item3" title="Item 3">
<jsxitem name="item4" title="Item 4">

</jsxmenu>

</jsxpalette>

As noted previously, the name, height, and width parameters behave as they do for all the
other tags the GoLive Extend Script SDK provides, so this section won’t discuss them. For
examples of the title attribute’s appearance in the palette and in the Window menu, see
Figures 3.3 and 3.4, respectively.

The order attribute defines a sort order for this palette among the other items and groups of
items that appear in the Window menu. The first two digits of this value specify the group of
menu items amongst which this item appears, while the second two digits define this item’s
sort order within the group.

Appendix B, “Sort Order Tables lists the values GoLive uses to sort built-in items that always
appear in the Window menu. According to this table, the Objects and Color menu items have
sort values of 0101 and 0110, respectively. Thus, the Script Palette palette’s menu attribute of
0151 specifies that it is to appear in after the Color item, as Figure 3.4 shows.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 63

FIGURE 3.4 Sort order in Window menu

Palette Menus

To add a palette menu to a jsxpalette, simply add a jsxmenu element and its associated
jsxitem elements to the body of your jsxpalette definition, as the code example at the
beginning of this section does. You cannot define more than one menu for each palette, but that
palette menu can define submenus.

Other Controls

A jsxpalette window can host any of the jsxcontrol objects that the SDK provides.These
controls behave the same way in a floating palette as they do in a running modal dialog, with
one exception: pushbuttons named dialogOK, dialogCancel, or dialogOther do not close or
hide palette windows.

Using the Dialog Editor Extension

The Dialog Editor sample extension provides a user interface you can use to design jsxcontrol
objects visually. Its output is intended for use in the GoLive design environment, not in Web
browsers.

NOTE: The Dialog Editor generates only the source code that defines a dialog’s appearance.
You must incorporate the output of the Dialog Editor into a Main.html file which
provides the additional code required to display and dismiss the dialog.

64 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

You can take the following steps to use the Dialog Editor extension:

1. Create a new, empty GoLive document window by choosing the File>New menu item.

2. Display the Dialog Editor’s palette entries by clicking its tab in the Objects palette or
choosing the Dialog Editor item from the Objects palette’s palette menu, as Figure 3.5
depicts.

FIGURE 3.5 Choosing the Dialog Editor palette

3. Whenever you use the Dialog Editor extension to create a dialog, you must begin by
creating a layout grid that will contain the other controls in the dialog. To do so, drag the
Layout Grid palette entry onto the GoLive document window.

A layout grid object similar to the one in Figure 3.6 appears.

FIGURE 3.6 Selecting layout grid activates its inspector window

4. In the document window, click the layout grid object once to select it. When this object is
selected, a border and handles appear, and the Inspector window displays the layout grid’s
properties, as Figure 3.6 shows.

Objects palette
palette menu

Layout Grid entry

Dialog Editor tab

Layout Grid object

layout object
for selected

Inspector window

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 65

5. The layout grid object is a substitute for the dialog window that will hold your dialog’s
content. Drag the handles or use the controls in the Inspector window to set the size and
position of the layout grid object to match that of the dialog window that will display the
dialog’s content.

6. Define your dialog’s content:
– Drag an icon from the Dialog Editor palette onto the layout grid object in the document

window.

GoLive creates a new element and displays its inspector window.
– Set the new element’s name attribute to a unique value.

IMPORTANT: To ensure reliable access to JavaScript objects, each name attribute must be
unique within the JavaScript namespace.

FIGURE 3.7 Layout view of typical dialog content

7. When you’ve finished defining your dialog, select it by clicking the layout grid once.

8. Choose the Window>Source Code menu item to display a Source Code window similar to
the one in Figure 3.8. When the layout grid is selected, the Source Code window highlights
the code that defines the dialog.

Static text object

Checkbox object

66 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

FIGURE 3.8 Source Code window with dialog code highlighted

9. Copy each jsxcontrol element from the highlighted code and paste it into the appropriate
container element in the destination Main.html file:
– To create a modeless dialog, paste the jsxcontrol elements into a jsxpalette element.

For a code example, see “Floating Palettes” on page 61.
– To create a modal dialog, paste the jsxcontrol elements into a jsxdialog element. For

a code example, see “Defining Dialog Content” on page 55.

10.In the Main.html file, implement code that displays and dismisses the dialog:

● For modal dialogs,
– Call the dialog’s runModal method to display the dialog.
– Call the dialog’s exitModal method to dismiss the dialog.

Alternatively, you can provide a control having a name attribute dialogok,
dialogcancel, or dialogother; when clicked, such controls dismiss the modal dialog.
For more information, see “Defining Dialog Content” on page 55.

● For modeless dialogs, you need not provide any additional code to display or dismiss the
dialog.
– The jsxpalette element installs your palette in the Windows menu.
– All jsxpalette objects provide a close box that the user can click to dismiss the

modeless dialog.

Static text object

Checkbox object

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 67

4 Custom Elements

The user can drag icons from the Objects palette to a GoLive document window to add
predefined elements to the page. This chapter describes how to define a custom HTML
element and install it in the Objects palette as an icon the user can drop into a GoLive
document.

Overview

When the user drags an icon from the Objects palette to a GoLive document window, GoLive

● adds the icon’s associated markup tags to the document

● places in the GoLive document window a visual representation of the content the icon
provides.

This visual representation, called a custom box, can reflect the actual appearance of the
custom element or it can draw a placeholder graphic; for example, a placeholder graphic could
be used to represent server-side content not available at the time the icon is dropped onto the
document window.

A custom box is like a GoLive component in the sense that it adds multiple elements to the
page. However, the content of a component is limited to that which can be created with
standard HTML tags, and the component offers no JavaScript access to its content.

In contrast, a custom box

● Defines a custom tag name that represents it in the GoLive design environment; thus you
can use custom boxes to define elements created from any mixture of your own custom
tags, tags the SDK provides, and standard HTML tags.

● Provides JavaScript access to the attributes of the custom element it represents; thus, the
custom box enables you to inspect what you might otherwise create as a component.

Tags For Creating Custom Elements

You’ll use the following tags to create custom entries in the Objects palette:

● The <jsxpalettegroup> tag creates a new tab inside the palette (or selects an existing tab)
which is then filled in with a number of <jsxpalettentry> tags.

● Each of the <jsxpalettentry> tags is a placeholder for the HTML code the palette entry
adds to the page; usually, this code contains a custom tag defined by the <jsxelement> tag.

● The <jsxinspector> tag is used to create a dialog which serves as the inspector for that
specific box. The necessary icons for the palette as well as necessary pictures to draw the
box may be defined using the widely known tag.

68 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Each of these tags has a classid attribute that GoLive uses to identify the elements of the
custom box. All of the tags used to define a custom box must specify the same classid
attribute value. This value identifies the palette entry that creates the custom box and inserts
HTML in the document, as well as the inspector window to display when the box is activated.
This value must be unique within the extension module.

Custom Box Event-Handling Functions

When the user drags a custom palette entry’s icon into a GoLive document window, GoLive
creates an empty custom box and places it in the document. Subsequently, it calls the
following functions your extension must provide:

● To draw the visual representation of the palette entry, GoLive calls the drawBox function,
passing the Box object to be drawn as its argument. This function may use the global Draw
object to draw its contents.

● When the user resizes the box by dragging at the box's borders or by entering data into the
inspector dialog, GoLive calls the extension’s boxResized and parseBox functions.
– The boxResized method accepts three parameters: the box object itself, the new width,

and the new height. In addition to updating the box’s appearance to match the new size,
your implementation of this method must also update the markup elements that the box
represents.

– After callling the boxResized method, GoLive calls the parseBox method, passing the
box object as its argument. This method adjusts the appearance of the box according to
the properties of the markup elements the box represents.

● GoLive also calls the extension’s parseBox method
– when a document containing the palette entry is read.
– when the user switches to Layout View from another view in the document window.

Development Overview

The rest of this chapter describes the following steps required to create an Objects palette entry
that provides a custom box:

● Define the custom element itself
– Define a custom tag name
– Define the custom tag’s HTML content

● Install the custom element as an icon in the Objects palette

● Implement functions that enable interaction with an instance of the custom element in a
GoLive document window.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 69

Defining A Custom HTML Tag

You can use the jsxelement tag to define the name of a custom HTML tag in the GoLive
environment. The content this custom tag adds to the page is defined elsewhere, in the
jsxpalettentry tag that is a companion to this jsxelement tag.

<jsxelement tagName="nameOfCustomTag" classid="yourUniqueID"
type="kindOfElement">

</jsxelement>

The tagName attribute of the <jsxelement> opening tag specifies the name of your custom
HTML tag; for example, a tagName attribute of mytag defines the <mytag> custom tag in the
GoLive environment. If this name duplicates that of any existing markup tag or JavaScript
object, your custom tag replaces the built-in tag and disables the built-in inspector for that tag,
so you should choose the name of your tag with this in mind.

The jsxelement tag and its associated jsxpalettentry tag must specify identical classid
attributes. The classid attribute is an identifier that associates a jsxpalettentry element
and a jsxinspector element with this jsxelement element. The value of a classid attribute
can be any text string that is not already used as an identifier elsewhere in the extension.

NOTE: The classid attribute does not provide any sort of built-in behavior or data. It’s just an
identifier GoLive uses to gather up all the code items it expects a custom element to
provide. The classid attribute is not a class name in the classic object-oriented
programming sense, and it has no relationship to the class names of objects that
GoLive uses internally.

The type attribute specifies the kind of element this tag defines, such as a container, a server-
side include, or some other kind of HTML element; thus, the value of this attribute defines
certain aspects of the element’s behavior and appearance. For a complete list of the kinds of
elements the jsxelement tag can define, see the description of the type attribute in the
jsxelement reference entry on page 126.

The following example defines the <mytag> tag.

<jsxelement tagName="mytag" classid="myclass" type="plain">

The tagname attribute of mytag specifies that this jsxelement tag defines the <mytag>
custom tag. Whether <mytag> is binary (requires a </mytag> closing tag) or unary (no
closing tag) is defined elsewhere, in the jsxpalettentry having the same classid
value.

The classid attribute of myclass matches the classid attribute of the
<jsxpalettentry> and <jsxinspector> tags associated with this <jsxelement> tag.

The type attribute of plain specifies that this is a standard HTML tag, rather than a
specialty tag such as a container.

Do not attempt to define your custom tag’s custom attributes here; instead, use the
jsxpalettentry tag to define them. The next section describes how to use this tag to define
the custom element’s HTML content and install it in the Objects palette.

70 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Defining the Custom Tag’s Palette Icon and HTML Content

The jsxpalettentry tag associates two important things with the custom tag that its associated
jsxelement tag defines:

● The HTML code this tag adds to the page when the user drops its icon in a GoLive
document.

● The icon that represents the custom tag in a jsxpalettegroup tab in the Objects palette.

The syntax of the <jsxpalettentry> tag is as follows.

<jsxpalettentry
display="DescriptionOfTag" classid="yourUniqueID"
picture="paletteIcon"

< customTagName attribute1 attribute2 ... attributeN > // custom elt
optional additional elements here

</customTagName> // optional
</jsxpalettentry>

The display attribute holds a short description of the custom element this palette item
represents. Figure 4.1 depicts an example of this description, which appears in the lower-left
corner of the Objects palette when the mouse cursor pauses over the custom icon.

FIGURE 4.1 Display attribute of jsxpalettentry

The classid attribute specifies a unique identifier that associates this jsxpalettentry tag
with its companion jsxelement and jsxinspector tags. The palette entry’s classid
attribute must match the classid attributes of its associated jsxelement and jsxinspector
tags exactly.

The picture attribute specifies the picture used as this custom element’s Objects palette icon.
GoLive scales this picture to 24 pixels high by 24 pixels wide automatically when it installs
the palette entry’s icon. The value of the picture attribute is the name attribute of an
tag defined elsewhere in the extension’s Main.html file. This tag’s src attribute
specifies the path to the picture to use as the custom element’s icon.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 71

Following the picture attribute is the HTML code that the custom element adds to the
generated page:

● The custom tag and its attributes

This HTML must begin with a left bracket (<) followed by the tag name the associated
jsxelement tag defines. Following that are the custom tag’s attributes. Finish the definition
of the custom HTML content with a closing bracket (>)

● The HTML code this tag is to add to the page.

Your definition of this code can be composed of any mixture of standard HTML tags,
special tags provided by the SDK, or your own custom tags. When the element is dropped
on the page, GoLive parses its tags and generates the HTML it adds to the document. In
this generated HTML,
– <jsx...> tags provided by the Extend Script SDK are replaced by standard HTML with

additional custom attributes.
– custom elements defined by <jsxelement> tags are added to the GoLive document’s

HTML source exactly as defined.

● An optional closing tag that takes the form of the custom tag with a forward slash inserted
between the leftmost bracket and the tagname; for example the closing tag for the <mytag>
tag is the </mytag> tag.

Here is an example jsxpalettentry element.

<jsxpalettentry display="Sample Box for <test> tag"
classid="test" picture="paletteIcon">

// this palette entry places two custom elements and an image on the page
<test name="myFirst" width=100 height=50 src="http://www.adobe.com">

<test name="myLast" width=100 height=50 src="http://www.adobe.com">

</jsxpalettentry>

NOTE: This example has been reformatted to enhance its readability. Do not include line
breaks in the HTML code your <jsxpalettentry> element adds to the page. Line
breaks in this code can cause cross-platform incompatibilities.

The display attribute of this palette entry produces the display text shown in the lower-left
corner of the palette in Figure 4.1.

The classid of test is a unique value shared only by the classid attributes of the
jsxelement and jsxinspector tags associated with this palette entry.

The picture attribute value of paletteIcon is the name attribute of the following tag,
defined elsewhere in this extension’s Main.html file.

Following the picture attribute is the closing bracket that finishes the <jsxpalettentry>
start tag.

Following the <jsxpalettentry> start tag is the HTML that this palette entry adds to the
page. This palette entry places an image and two instances of the test custom element on the
page. The test element consists of the <test> tag and the content it adds to the page—the
name, width, height, and src attributes.

72 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

<test name="myFirst" width=100 height=50 src="http://www.adobe.com"><img sr
c="Images/ducky.jpg"><test name="myLast" width=100 height=50 src="http://ww
w.adobe.com">

The mess above isn’t a typographical error, it’s how your custom element definition should
look. Don’t include line breaks in the definition of your custom element—they cause cross-
platform incompatibilities in your code.

The attributes associated with your custom element are defined in the HTML the palette entry
adds to the page. Note that this palette entry adds two test elements to the page, and that each
test element can define and initialize its respective attributes as necessary to produce the
desired output.

Finally, the </jsxpalettentry> end tag finishes the definition of the palette entry.

Installing A Custom Entry In the Objects Palette

The jsxpalettegroup element specifies the tab under which its jsxpalettentry items appear
in the Objects palette. This element can be used to add entries to one of the built-in Objects
palette tabs or it can be used to define a custom tab under which its entries appear; for
example, Figure 4.2 depicts the addition of the Custom Box sample extension’s custom tab.

FIGURE 4.2 Custom tab in Objects palette.

The jsxpalettegroup element looks like the following example.

<jsxpalettegroup
name="objectName" display="tabName" tabOrder="anInteger"
picture="tabIcon" order=anInteger >

</jsxpalettegroup>

As usual, the name attribute specifies the name under which the tab’s JavaScript representation
appears in the global namespace.

● To add this group of palette entries to a custom tab, specify your own unique identifier as
the value of this attribute.

● To add this group of palette entries to one of the built-in Objects palette tabs, specify one of
the predefined name attributes described in the jsxpalettegroup section beginning on
page 125. If you use a predefined name attribute, omit the display, picture, and
taborder attributes from your jsxpalettegroup tag—the built-in tabs provide these
attributes for you and you cannot change them.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 73

The display attribute specifies the text that appears when the mouse pointer pauses over the
tab on the screen; for example, in Figure 4.2, the tab’s display attribute holds the Extension
Sample value. If you use a predefined name attribute, your jsxpalettegroup tag can omit the
display attribute.

The picture attribute specifies the icon that appears in the custom tab. The value of this
attribute is the name attribute of an tag that specifies the path to this picture as the value
of its src attribute. If you use a predefined name attribute, your jsxpalettegroup tag can
omit the picture attribute.

The taborder attribute specifies the sort order for this tab amongst all tabs appearing in the
Objects palette. Objects palette tabs are sorted by taborder value from least to greatest, with
higher values appearing closer to the rightmost edge of the palette. If you use a predefined
name attribute, your jsxpalettegroup tag can omit the taborder attribute.

The order attribute is used only to add palette entries to one of the built-in tabs, such as the
Basic tab. When you add palette entries to a built-in tab, the value of the order attribute
specifies the position at which GoLive adds all of your custom entries. Your icons are always
added to the palette in the order your extension defines them.Thus, if the value of your order
attribute that is less than that used by a built-in palette entry, your icons are put into the palette
before that built-in icon.

Adding Palette Entries to a Built-in Tab

To add custom palette entries to one of the built-in Objects palette tabs, specify one of the
predefined name attributes described in the jsxpalettegroup section beginning on page 125; for
example, the following jsxpalettegroup tag adds its jsxpalettentry icons to the Basic tab.

<jsxpalettegroup name="Basic"order=3000>
//jsxpalettentry tags appearing here are added to the Basic tab

</jsxpalettegroup>

When you specify a predefined name attribute, omit the rest of the jsxpalettegroup tag’s
attributes—each built-in tab provides its own display, picture, and tabOrder attributes that
you cannot change.

You can still specify an order attribute for your palette entries if you prefer to do so, as the
preceding example does.This example adds its palette entries to the Basic tab. The order
attribute’s value of 3000 causes GoLive to add these palette entries after it adds the last built-in
palette entry, which has an order value of 140. For a listing of all taborder and orderid
values used by the built-in palette icons, see “Objects Palette Entries” on page 196,

74 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Adding Palette Entries to a Custom Tab

The following HTML example code creates the custom tab shown in Figure 4.2.

<jsxpalettegroup name="XTND" display="Extension Sample"
tabOrder="3000" picture="paletteGroupIcon"
order=3000>

// <jsxpalettentry> tags go here
</jsxpalettegroup>

As always, the name attribute defines the custom tab’s JavaScript identifier, and the display
attribute defines the tab’s on-screen identifier; in this case, the display attribute defines this
palette item’s tool tip.

The tabOrder attribute defines a sort order for this tab among the other tabs that appear in the
Objects palette.

This tag’s order attribute is meaningful only when installing a custom palette entry amongst
those built into GoLive itself. When a single extension places only its own entries on its own
palette, as this simple example does, GoLive sorts the entries according to the order attribute
of each entry’s <jsxpalettentry> tag and it ignores the order attribute of the
<jsxpalettegroup> tag that wraps those entries, and you can use any numeric values that
produce your intended sort order. When you’re installing your icon onto one of the built-in
palettes, the order attribute defines a sort order for this palette’s icons amongst all icons on the
tab. The first two digits of this value specify the group of tabs amongst which this tab appears,
while the second two digits define this tab’s sort order within the group. The IDs used to sort
the tabs and palette entries built into GoLive are listed in “Objects Palette Entries” on
page 196.

Basic Custom Boxes

When the user drags an icon from the Objects palette to a GoLive document, GoLive adds the
tag’s HTML code to the GoLive document and places a visual representation of the tag in the
GoLive document window. This visual representation, called a custom box, can reflect the
actual appearance of the custom element or it can be a placeholder graphic; for example, a
placeholder graphic could be used to represent server-side content not available at the time the
page is created. The custom box also provides JavaScript access to the attributes of the custom
HTML element it represents.

When the user selects the custom box, GoLive

● Initializes the custom box as described in Initializing the Custom Box.

● Displays the custom box as described in Displaying the Custom Box.

● Activates the custom box’s inspector window as described in Inspecting the Custom
Element.

● Provides handles that enable the user to resize the custom box, as described in Resizing
Custom Boxes. These handles do not appear when resizing behavior is disabled by the
fixedWidth or fixedHeight attributes.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 75

Initializing the Custom Box

GoLive initializes a custom box in response to any of the following events:

● The user drops an Objects palette icon onto a GoLive document window.

● GoLive reads a document containing a custom HTML element defined by the jsxelement
and jsxpalettentry elements.

● The user switches to Layout View from another view in the document window.

To initialize the custom box, GoLive calls the parseBox function of the extension that created
the element the box represents. Your implementation of this function must initialize the box in
any way that is appropriate; for example, this function might set the box’s height and width as
specified by the height and width attributes of the custom HTML element.

GoLive passes to the parseBox function a Box Object that holds the HTML code associated
with the custom element. This box object’s element property provides JavaScript access to the
custom element’s attributes; thus, to initialize the height and width attributes of the custom
box, your implementation of the parseBox function could use JavaScript code like that shown
in the following example.

function parseBox(box) {
box.width = (box.element.width == undefined) ? 48 :

box.element.width;
box.height = (box.element.height == undefined) ? 48 :

box.element.height;
box.url = (box.element.src == undefined) ? "none" :

box.element.src;
box.link = box.createLink(box.url);
box.oldWidth = box.width;
box.oldHeight = box.height;

}

Displaying the Custom Box

To display the custom box, GoLive calls the extension’s drawBox function, passing to it the
box to draw and a Draw object. The Draw Object provides methods that draw lines, circles,
rectangles, or images. Your implementation of the drawBox function calls the passed Draw
object’s methods to paint the visual representation of the custom box on the screen.

The Draw object is valid only during the execution of the function that receives it as an
argument. Attempting to use the draw object outside this function generates a runtime error.

76 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Here’s a simple example of a drawBox function.

// define an img object to represent the placeholder graphic by name

function drawBox(box, draw) {
// set width & height of graphic to values passed in by box
placeholderGraphic.width = box.width;
placeholderGraphic.height = box.height;
// draw the placeholder graphic
placeholderGraphic.draw(0,0);

}

This code sets the width and height of the placeholder graphic to the values specified by the
custom box and then calls the draw function of the placeholderGraphic picture object to
redraw the visual representation of the custom box at the size the user specified.

Here’s a slightly more elaborate drawBox function. It paints a white background and frames it
in black before drawing the custom placeholder graphic on top of this background.

// define an img object to represent the placeholder graphic by name

function drawBox(box, draw) {
// draw a filled rect as background
if (box.element.color != undefined)

draw.setColor(box.element.color);
else

draw.setColor("white");
draw.fillRect(0, 0, box.width, box.height);
// frame the background in black
draw.setColor("black");
draw.frameRect(0, 0, box.width, box.height);

// set width & height of graphic to values passed in by box
placeholderGraphic.width = box.width;
placeholderGraphic.height = box.height;
// draw the placeholder graphic
placeholderGraphic.draw(0,0);

}

The Draw object’s setColor method specifies the color used for drawing. It accepts color
values specified as any valid HTML color name, such as "red", "#FF0000", or "#F00". The
method also accepts integer triplets specifying red, green, and blue values from 0 to 255.
Therefore, the following three lines of JavaScript are equivalent—all set the color to red.

setColor ("#FF0000")

setColor ("red")

setColor (255, 0, 0)

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 77

The preceding drawBox() example always draws the same thing, however. An extension that
adds multiple entries to the Objects palette would provide a drawBox function more like the
following example, which uses a switch statement to call one of several drawXx custom
drawing functions.

function drawBox(box, draw) {
draw.textFont ("ApplicationFont");
switch (box.element.type) {

case "button":drawButton (box, draw); break;
case "checkbox":drawCheck (box, draw); break;
case "radiobutton":drawRadio (box, draw); break;
case "edit":
case "editarea":drawEdit (box, draw, false); break;
case "buttonedit":drawEdit (box, draw, true); break;
case "static":drawStatic (box, draw); break;
case "color":drawColor (box, draw); break;
case "urlgetter":drawGetter (box, draw); break;
case "popup":drawPopup (box, draw); break;

}
}

Each of these drawXx custom drawing functions uses the draw object in a manner similar to
the following example of the drawRadio function.

function drawRadio (box, draw) {
var w = box.width-1, h = box.height-1;
draw.setColor ("silver");
draw.fillRect (0, 0, w, h);
var x = 5, y = (h-12)/2;
draw.setColor ("white");
draw.fillOval (x, y, 12, 12);
draw.setColor ("black");
draw.frameOval (x, y, 12, 12);
draw.fillOval (x+3, y+3, 6, 6);
var sh = draw.stringHeight(box.element.value);
draw.moveTo (20, (h-sh)/2);
draw.drawString (box.element.value);

}

For additional examples of the use of the draw object, see the custom drawXx drawing
functions in the Dialog Editor sample code that the SDK provides.

78 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Inspecting the Custom Element

The Inspector window is always available in the Window menu. The Inspector window
provides a user interface for getting and setting

● The properties of a custom element’s JavaScript representation.

● The attributes of the HTML source the custom element added to a GoLive document.

When the user selects any modifiable page element in the GoLive document window, GoLive
passes to the Inspector window a unique value that identifies the kind of element selected. The
Inspector window’s interface customizes itself accordingly, displaying the controls appropriate
for manipulating that element’s properties or attributes. GoLive provides inspectors for all
built-in elements that the user can modify. To initialize the inspector window appropriately for
a custom element, GoLive uses the custom element’s classid attribute.

FIGURE 4.3 Inspecting the Attributes of a Custom Element

The jsxinspector tag specifies the group of jsxcontrol objects that populates the Inspector
window when a custom element having a particular classid is selected.

<jsxinspector name="objectName" title="nameInWindowMenu"
classid="yourUniqueID" width="anInteger" height="anInteger" >

// jsxcontrol tags that provide inspector window controls go here
</jsxinspector>

Because the Inspector window is a palette window, defining a jsxinspector element is very
similar to defining a jsxpalette element:

● Use the name, title, width, and height attributes just as you would use the same-named
attributes of the jsxpalette tag. For more information, see “Floating Palettes” on page 61.

● Use jsxcontrol tags to define the contents of your inspector dialog just as you would use
them to define the contents of a jsxpalette window.

The classid attribute specifies the custom tag and custom palette entry that define the custom
element this window inspects. Set the value of the jsxinspector tag’s classid attribute to
the same classid value used by the jsxelement and jsxpalettentry tags that define the
custom element this window inspects.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 79

Here’s an example of the use of the <jsxinspector> element. As you can see, it wraps around
the numerous jsxcontrol elements that provide this inspector window’s static text, edit
fields, popup menus, and color field.

<jsxinspector name="myJSXInspector" title = "My Custom Element"
classid="myClassID" width=215 height=200>
<jsxcontrol type="static" posx=10 posy=14

width=40 height=14 value="X">
<jsxcontrol type="buttonedit" name="cX" posx=55 posy=10

width=50 height=19>
<jsxcontrol type="static" posx=10 posy=36 width=40 height=14

value="Y">
<jsxcontrol type="buttonedit" name="cY" posx=55 posy=32

width=50 height=19>
<jsxcontrol type="static" posx=110 posy=14 width=40 height=14

value="Width" halign="right">
<jsxcontrol type="buttonedit" name="cWidth" posx=155 posy=10

width=50 height=19 halign="right">
<jsxcontrol type="static" posx=110 posy=36 width=40 height=14

value="Height" halign="right">
<jsxcontrol type="buttonedit" name="cHeight" posx=155 posy=32

width=50 height=19 halign="right">
<jsxcontrol type="static" posx=10 posy=58 width=40 height=14

value="hAlign">
<jsxcontrol type="popup"name="cHalign"posx=55 posy=54

width=60 height=19 value="left,center,right,scale">
<jsxcontrol type="static" name="cColorLbl" posx=110 posy=58

width=40 height=14 value="Color" halign="right">
<jsxcontrol type="color" name="cColor" posx=175 posy=54

width=30 height=19 halign="right">
<jsxcontrol type="static" posx=10 posy=80 width=40 height=14

value="vAlign">
<jsxcontrol type="popup" name="cValign" posx=55 posy=76

width=60 height=19 value="top,center,bottom,scale">
<jsxcontrol type="static" posx=10 posy=102 width=40 height=14

value="Name">
<jsxcontrol type="buttonedit" name="cName" posx=55 posy=98

width=100 height=19 halign="scale">
<jsxcontrol type="static" posx=10 posy=124 width=40 height=14

value="Value">
<jsxcontrol type="buttonedit" name="cValue" posx=55 posy=120

width=100 height=19 halign="scale">
</jsxinspector>

This code provides the Inspector window shown in Figure 4.3 on page 78

80 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Initializing the Inspector Window

Before displaying the inspector window, GoLive calls the extension’s inspectBox function,
passing the box to inspect as its argument. Your implementation of this function initializes the
controls in the Inspector window to reflect the current values of the properties of the JavaScript
representation of the custom element. The following example illustrates a simple inspectBox
function.

function inspectBox(box) {
// init height and width fields per passed attrs
box.inspector.cWidth.value = box.width;
box.inspector.cHeight.value = box.height;
// init other fields to defaults if no value supplied by box
box.inspector.cHalign.value =

(box.element.halign == undefined) ? "left" : box.element.halign;
box.inspector.cValign.value =

(box.element.valign == undefined) ? "top" : box.element.valign;
box.inspector.cName.value =

(box.element.name == undefined) ? "" : box.element.name;
box.inspector.cValue.value =

(box.element.value == undefined) ? "" : box.element.value;

// enable & init color field only if it is selected
var cEnabled = false;
switch (box.element.type) {

case "color":box.inspector.cColor.value = box.element.value;
cEnabled = true; break;

}
box.inspector.cColorLbl.enabled =
box.inspector.cColor.enabled = cEnabled;

}

Most of this function body initializes the various controls the jsxinspector tag puts in the
Inspector window. The inspector property of the box object GoLive passes to you provides
access to the inspector window associated with this custom box; thus, each line of code that
sets the value of a control in the inspector window is a variation on the following expression ,
which assigns a value to the control’s value property:

box.inspector.controlName.value = newValue;

As you might guess, you can read a control object’s value property to get the control’s current
value. Note that the object the value property holds, and the manner in which its value is set
or retrieved, is a function of the control object’s type.

The box object passed to this function by GoLive always has valid width and height
properties, so the first two lines of code initialize the values of the cWidth and cHeight text-
entry fields directly from these properties.

box.inspector.cWidth.value = box.width;
box.inspector.cHeight.value = box.height;

It’s not necessarily good coding practice to assume that values passed to your code are valid,
or even present. The next code fragment shows an initialization technique that tests for the
presence of the halign property before using it. The halign and valign properties of the box

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 81

object specify the horizontal alignment and vertical alignment of the box with respect to its
container; in this case, the container is the document window in which the box appears.

box.inspector.cHalign.value =
(box.element.halign == undefined) ? "left" : box.element.halign;

If this property is supplied, this code uses it; if not, the code sets the value of the
box.element.halign property to a default value of left aligned. The next several lines of
code use this technique to initialize most of the remaining controls in the Inspector window. Of
interest is the final code fragment, which enables and initializes the Inspector window’s color
controls only when a color field is selected.

var cEnabled = false;
switch (box.element.type) {

case "color":box.inspector.cColor.value = box.element.value;
cEnabled = true; break;

}
box.inspector.cColorLbl.enabled = box.inspector.cColor.enabled = cEnabled;

Although GoLive objects ignore bad values, it is recommended that your code always validate
values before using them; when presented with bad input, your code can then more easily
provide default values, display appropriate user feedback, or make a graceful exit.

The controlSignal Function

When the state of any control in the inspector window changes, GoLive calls the extension’s
controlSignal function, passing the changed control as its argument. Your implementation
of this function must update the appearance of the custom box and the attributes of its markup
elements.

The following code example depicts a controlSignal function that implements Inspector
window functionality. The body of this function holds a switch statement that responds
appropriately for the various controls GoLive passes to it.

function controlSignal(control)
{

var box = control.parent.box;
switch (control.name) {

case "cX":box.element.posx = control.value; break;
case "cY":box.element.posy = control.value; break;
case "cWidth":box.width = box.element.width = control.value; break;
case "cHeight":box.height=box.element.height=control.value; break;
case "cHalign":box.element.halign = control.value; break;
case "cValign":box.element.valign = control.value; break;
case "cName":box.element.name = control.value; break;

}
box.refresh();

}

The first line of code in the body of this example retrieves a reference to the custon box
associated with the control that caused this method to be called.

var box = control.parent.box;

82 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The parent property of the jsxcontrol object passed to the controlSignal function returns
the Inspector window that displays the control. The Inspector window’s box property provides
access to the custom box that has the same classid as the inspector window. The box local
variable holds this reference for use by subsequent statements in the body of the
controlSignal function.

IMPORTANT: The box property is valid only when the Inspector window is active; at all
other times, the value of this property is null.

Most of the rest of this function body is a switch statement that uses the name attribute of the
passed control as its case expression. Each case in the switch statement assigns the current
control value to the appropriate attribute of the custom element.

Once the element’s attributes have been updated to reflect current control values, this function
calls the box object’s refresh method to redraw the custom box using the new values.

This particular example deals with only the controls defined by the Inspector window example
shown earlier in this section; normally, your controlSignal function’s switch statement
provides a case expression for every control to which the extension must respond, including
those that populate other custom dialogs or palettes your extension displays.

Resizing Custom Boxes

This section assumes that you understand the information presented in “Basic Custom Boxes”
on page 74. If you have not yet read this material, do so now, before reading this section.

When the user resizes a custom box, GoLive calls the extension’s boxResized function,
passing the box object and its new size as arguments. Your implementation of this function
validates the new values and sets the attributes of the custom element accordingly, as the
following example code does.

function boxResized(box, width, height) {
if (width <= 500)

box.element.width = width;
if (height <= 500)

box.element.height = height;
}

The validation you perform here is defined entirely by the specific needs of your extension;
that is, bad values won’t crash GoLive, but they may cause your extension to misbehave, so
your validation code simply ensures that these values are suitable for your extension’s use.

Built-In Undo Support

GoLive provides built-in undo support for dropping and resizing custom boxes. The user can
undo or redo such operations by choosing the Undo or Redo item from the Edit menu.

For other operations involving your custom element, you’ll need to implement undo support
yourself, as described in “Supporting the Undo and Redo Commands” on page 95.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 83

Drawing Custom Controls

The visual representation of a custom control is a custom box. When a custom control needs to
be redrawn, GoLive calls the drawControl global function, passing the control to draw and a
Draw Object as its arguments. The Draw object provides methods that draw lines, circles, or
rectangles.

Your implementation of the drawControl function calls the passed Draw object’s methods to
paint the visual representation of the custom control on the screen.

The Draw object is valid only during the execution of the function that receives it as an
argument. Attempting to use the Draw object outside this function generates a runtime error. If
the SDK detects an error in a drawing function, such as in the drawControl or drawBox
function, it does not call this function any more.Without this feature, an error in a drawing
function would cause GoLive to throw an endless stream of errors, because drawing functions
are called whenever a JavaScript object must be redrawn.

Updating A Control’s Appearance Immediately

The Draw object passed as an argument to the drawControl or drawBox function may not
provide responsive enough drawing behavior for controls that provide user feedback through
their appearance. To solve this problem, you can create a temporary Draw object that provides
more responsive drawing behavior to the custom control.

The beginDraw method of a jsxcontrol object creates and returns a temporary Draw object
that you can use to draw a control’s new appearance immediately. When these drawing
operations are complete, call the endDraw method to terminate the temporary Draw object.

The temporary Draw object is not valid after the endDraw method is called. Do not call the
temporary draw object from outside the calls to the beginDraw and endDraw methods that
create it and terminate it.

Only one temporary draw object can exist at any time. You cannot “nest” calls to the
beginDraw method; that is, never call the beginDraw method more than once before calling
the endDraw method.

Redefining Existing Tags

You can use the <jsxelement> tag to redefine any existing HTML tag; for example, you could
define your own version of the tag or the <MARQUEE> tag. Redefining an existing tag
effectively disables GoLive's built-in tag-handling code for that tag and turns it into a custom
element that you manage like any other custom element you define; in other words, you must
supply your own box as well as your own inspector for the redefined element.

When you replace a standard HTML tag with your own, your tag need not define its own
palette icon or palette entry. You can install your new definition of the tag under the palette
entry and icon GoLive provides for the standard tag.

84 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

When the user drags the icon to a GoLive document, the SDK adds your custom HTML to the
page instead of the HTML specified by the standard tag you replaced. Instead of displaying the
usual visual representation that GoLive displays for the replaced element, GoLive displays
your custom box. The same thing happens when GoLive parses a file containing one or more
occurrences of the redefined tag. Instead of creating the visual representation normally
associated with the tag, GoLive creates custom boxes.

The ability to redefine tags as custom elements enables you to redefine a tag’s inspector, or to
define an inspector for an element that the user could not otherwise inspect. For example, the
user cannot normally inspect the constituent elements of a GoLive component, which is a
container that holds other HTML elements.When the same content is implemented as a
custom tag that defines a custom page element and a custom box, a custom inspector can
provide access to the properties of any of its constituent objects.

IMPORTANT: Redefining a tag makes the standard inspector for that tag unavailable to all
elements defined by that tag. For example, if you define your own version of
the tag, elements cannot use the image inspector that GoLive
provides—they must use a custom inspector you provide.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 85

5 Manipulating Document Objects

This chapter contains the following sections, which describe how your JavaScript code can
manipulate GoLive document objects or their corresponding tags.

● “The Markup Tree” on page 85

● “Selections” on page 88

● “Manipulating Elements Programmatically” on page 90

● “Supporting the Undo and Redo Commands” on page 95

The Markup Tree

A document is a collection of objects in memory. A file is the disk-based representation of
those objects. When GoLive reads an HTML file, it creates a document that holds a proprietary
internal representation of the file’s data in memory and it leaves the file on disk unchanged.

When GoLive interprets a tag, it creates two sets of objects:

● An internal representation of the element that the tag and its attributes defines. This internal
representation is not created in JavaScript and JavaScript callers cannot access it directly.

● A set of JavaScript objects that provide access to the internal representation of the element.
These objects are structured as a binary tree, known as the markup tree. Individual objects
in the tree are called markup elements. The structure of the markup tree resembles that of
the HTML elements that define it.

Each markup element represents an HTML element definition in the source HTML. The
properties of the markup element implement the attributes of its associated HTML element.
For example, if your HTML element defines the myAttr attribute, the markup element it
generates has a myAttr property.

GoLive provides two structured views of data associated with the active document:

● The HTML outline view , shown in Figure 5.1, provides a graphical depiction of the
element hierarchy that the active document’s HTML source defines. You can use this view
to help you envision the structure of the markup tree that this source generates; in
particular, you can look at this view to see how individual elements fit into the entire tree.
You can edit HTML source directly in this view, but you cannot edit the markup tree
directly in this view.

86 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

FIGURE 5.1 HTML Outline view

● The Markup Tree window, shown in Figure 5.2, depicts the branch of the markup tree that
leads from the currently-selected object to the root node of the tree. This view is useful for
determining exactly which markup elements provide access to the currently-selected
element. You can also click objects in this view to set the selection in the document
window.

FIGURE 5.2 Markup Tree window shows objects that contain current selection

The root of the tree is an object that corresponds to the <GoLiveMarkup> tag reserved for use
by GoLive. This root object defines one html element, which defines a body element and one
or more optional head elements. The body element can contain additional GoLiveMarkup

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 87

elements, each of them being the root of a tree of objects that represents the content of a single
page in the site. Each optional head element can provide text, scripts, or both.

JavaScript Access to the Markup Tree

The JavaScript document object model (DOM) provides access to the markup tree from
JavaScript. This section introduces the most significant objects, properties, and methods used
to work with the markup tree. To familiarize yourself with these objects, you can use the
JavaScript Shell window to evaluate some of the JavaScript expressions this section describes.

Almost every SDK object provides a name property that you can use to retrieve it. The objects
that represent a document and its markup tree are notable exceptions to this rule. As this
section describes how to access these objects, it will also note how they are identified in the
JavaScript namespace. For your future reference, Table 5.1 summarizes this information.

TABLE 5.1 Identifiers for Document and markup objects

The global document property returns a Document Object that represents the currently-active
GoLive document. For example, if you open the readme.html file in GoLive and enter
document into the JavaScript Shell window, GoLive returns [JSXDocument readme.html] as
the result. The JSXDocument identifier means this object is an Extend Script Document Object,
and that readme.html is the value of this document object’s title property.

The element property of the document object holds the markup tree as a Markup Object,
which provides properties and methods you can use to

● navigate the markup tree.

● manipulate markup elements and associated HTML sources programmatically.

● retrieve subelements.

● retrieve its parent element.

Of course, the root of the tree does not have a parent element.

Evaluating document.element returns [JSXMarkup <GoLiveMarkup>] as the result. The
JSXMarkup identifier indicates that this object is a markup object, and <GoLiveMarkup> is its
tagName property. This particular JSXMarkup object is special because its tagName property
identifies it as the JSXMarkup object that is the root of the markup tree. Only one JSXMarkup
element per page has <GoLiveMarkup> as the value of its tagName property.

Type of Object Property used for access by name

JSXDocument title

JSXMarkup tagName

88 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The rest of the markup tree consists of JSXMarkup objects that are the subelements of the
<GoLiveMarkup> object. You can retrieve a subelement in the folllowing ways:

● The subelements property of the Markup object presents the subelements as an array that
can be accessed by name or by number.

● The getSubElement method of the Markup object retrieves the nth occurrence of a
subelement having a specified tagName property. This method counts elements depth-first.

For details regarding all of the properties and methods this object provides,, see “Markup
Object” on page 152.

The JSXMarkup object also furnishes methods that provide access to the HTML code that
defines the element it represents. These methods can separate an element’s opening and
closing tags from the HTML they surround. An element’s opening tag and closing tag are
collectively referred to as the element’s outer HTML , while everything appearing between
these tags is known as the element’s inner HTML . In the following example, the element’s
outer HTML consists of the <H1> start tag and the </H1> end tag, while its inner HTML
consists of the This is the inner HTML text.

<H1> // outer HTML
This is the inner HTML

</H1> // outer HTML

The concept of inner and outer HTML applies only to binary tags, which are those used in
pairs consisting of an opening tag and a closing tag. For example, a unary tag such as the
 tag does not require the use of a closing tag; thus, the getInnerHTML method returns
the empty string for this element.

Selections

The document.selection property holds a Selection Object that provides JavaScript access
to the current user selection in the active document.

The user can create different kinds of selections; for example the user can select part of an
element, an entire element, or multiple elements. The value of the selection object’s kind
property provides a hint about what the user selected:

point No selection. The selection reflects the cursor position.

part A portion of the current markup element is selected, such as
when only part of a text element is selected.

full The entire markup element has been selected, such as when the
user clicks an image box.

complex More than one markup element is selected or partially selected.

outside The selection is outside of the current markup element. This
should not happen.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 89

Three additional properties provide access to the HTML source associated with the selected
elements:

The selection object’s element property holds the first markup element that is part of the
current selection.

Retrieving the Current Selection

The following example demonstrates how to use the properties of the selection object to
retrieve the current user selection in the active document. If the user selects the word is in a
text element that holds the phrase This is a fine product as its content, the properties of
the selection object would provide the following information:

When the selection is not text, the document.selection.text property holds the HTML
source that defines the selection; for example, clicking an image in the active GoLive
document results in the following selection data:

start Number Offset from the outer HTML representation of the first selected
tag to the first character of HTML code in the selection.

length Number Number of ASCII characters that define the selection in its
associated HTML.

text String The HTML source code associated with the selection.

Property Value Description

document.selection.element "Text" Markup object that holds selection. This
element is a Text element.

document.selection.type "part" Only part of the element is selected.

document.selection.start 5 Selection begins at offset position 5.

document.selection.length 2 Selection is two characters in length.

document.selection.text "is" The selected characters.

Property Value Description

document.selection.element "Img" Markup object that holds selection. This
element is an Img element created by the
 tag and attributes in the
document.selection.text property.

document.selection.type "full" The entire element is selected.

document.selection.start 0 Selection is not offset from beginning of
element.

90 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Setting the Current Selection

To select a markup element, assign it to the element property of the selection object.
Assigning to this property anything other than a markup element returns an undefined result
and leaves the current selection unchanged.

The following example selects the third image in the active document.

document.selection.element =
document.element.getSubElement ("img", 2);

NOTE: The SDK does not support programmatic selection of a partial element; for example,
Javascript code cannot select the third word in a headline, but the end-user can make a
partial selection such as this one.

To make a window frontmost, assign its document object to the global document property.

Manipulating Elements Programmatically

Changing an element of the markup tree does not change that element’s HTML representation
in the document that generated the markup tree, nor does it change the element’s visual
representation in the GoLive document window. Generally, whenever you change one of these
things, you must update the others. This section describes how to

● add, delete, or change HTML elements in a GoLive document

● generate a new markup tree that reflects the current HTML

● update the document’s visual representation on screen to display the new markup.

To change the HTML source code associated with an element, use the getInnerHTML,
getOuterHTML, setInnerHTML, and setOuterHTML methods as necessary to manipulate the
tags that define the element in the source document. The new HTML code you insert in the
source document does not have to resemble the code it replaces—it can be completely
different if you so choose.

The following example defines an extension-specific makeBold function that sets the current
text selection to boldface by enclosing it between and tags; to do so, it replaces the
selected element’s inner HTML with HTML that includes these additional tags.

document.selection.length 24 The source text that defines the selected
markup element is 24 characters long. The
document.selection.text property
provides access to this text.

document.selection.text "<img width=32
height=32>"

The selected object’s HTML definition.

Property Value Description

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 91

sel = document.selection;
function makeBold (sel) {

// exit if selection is null
if (sel == null) return;
// work with full or partial selections only
if ((sel.type == "full") or (sel.type == "part"))
{

var selText = sel.text;
var htmlText = sel.element.getInnerHTML();
htmlText = htmlText.substr (0, sel.start)

 + "" + selText + ""
 + htmlText.substr (sel.start + sel.length);

sel.element.setInnerHTML (htmlText);
document.reparse();

}
// display appropriate alerts for invalid selections
if (sel.type == "point")

alert("You haven't made a selection.");
if (sel.type == "complex")

alert("You've selected more than one element.");
if (sel.type == "outside")

alert("Sorry, selection is not valid.");
}

The first line of code in this example retrieves the Selection Object that provides JavaScript
access to the current user selection in the currently-active GoLive document.

sel = document.selection;

The next line of code passes this object to the makeBold example function.

function makeBold (sel) {

Before attempting to work with the selection at all, the makeBold function performs several
tests to ensure the validity of selection passed to it. If passed a null object, this function
simply exits without taking any further action.

if (sel == null) return;

The next line of code tests the type property of the selection object to determine whether the
selection is one that this function can manipulate successfully. In this case, full or partial
selections are valid. Any other kind of selection results in the display of a user alert.

if ((sel.type == "full") or (sel.type == "part"))
{

// code to manipulate valid selections goes here
}

// display appropriate alerts for invalid selections
if (sel.type == "point")

alert("You haven't made a selection.");
if (sel.type == "complex")

alert("You've selected more than one element.");
if (sel.type == "outside")

alert("Sorry, selection is not valid.");

92 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The next block of code places the currently-selected text between and tags by
constructing a new text string that includes the original text and the new tags. The text
property of the selection object holds the currently-selected text; thus, the first line of the body
of this function uses this property to extract the text selection and store it in the selText local
variable.

var selText = sel.text;

Next, the function retrieves the HTML to replace.

var htmlText = sel.element.getInnerHTML()

The selection object’s element property holds the first element in the selection. That element’s
getInnerHTML method returns that portion of the element’s HTML which appears between its
opening and closing tags (or, in the case of a unary tag, the text that appears between its
opening and closing angle brackets). This line of code stores the retrieved inner HTML in the
htmlText local variable.

Having retrieved the original text that appears on the screen, as well as the inner HTML that
defines it, this function can now use them to construct a string to insert in the document as the
new inner HTML which boldfaces the current text selection. To construct this string, the
function uses the + operator and the substr method that all JavaScript string objects
provide.The substr method dissects the original HTML text into pieces that the + operator
combines with the "" and "" string literals to create a new text string which, when
interpreted as HTML, renders the originally-selected text in boldface.

The following line of code does this work. The next several paragraphs examine this code in
detail.

htmlText = htmlText.substr (0, sel.start)
 + "" + selText + ""
 + htmlText.substr (sel.start + sel.length);

Because the JavaScript expression to the right of the = operator is evaluated before it is
assigned to the htmlText variable that appears to the left of the = operator, the right-hand side
of this statement operates on the contents of the htmlText variable to construct the new string
before the left-hand side reuses the htmlText variable to hold the newly-constructed string.

The syntax of the substr method looks like this:

returnedText string.substr (start, length);

The substr method returns a portion of the string object’s text. The returnedText holds length
number of characters of the original string object’s value property, beginning at the start
index position. The first character in a JavaScript string is at position 0.

The start property of the selection object specifies the position of the first selected character
that its text property provides. Because you are replacing the entire element, not just the
characters to be boldfaced, the constructed string must include those characters that are not
part of the current selection. Thus, the constructed string begins with the htmlText.substr
(0, sel.start) expression.

Because indexes into JavaScript strings are zero-based, the 0 argument specifies that the
returned substring begins with the first character in the htmlText string. Similarly, passing the
sel.start expression as the length argument causes the substr method to include in the

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 93

returnedText string all of the characters up to (but not including) the first selected character.
For example, if you have a string that is 15 characters in length, the first character in the string
is at index position 0 and the tenth character in that string is at index position 9; thus, if the
tenth character is selected, the value of sel.start is 9. For this example string, substr (0,
sel.start) would evaluate to a string that includes 9 characters, beginning at position 0, that
includes the characters in positions 0 through 8. Thus, using sel.start as the length
argument to the substr method conveniently excludes the first selected character from the
substring that begins the newly-constructed HTML code.

The next portion of this expression uses the + operator to append the "" string to the
HTML being constructed. The + operator is then used again to add the selText variable to the
substring being constructed; because selText holds the currently-selected text, adding it to
the substring has the effect of adding this text immediately following the tag. A string
literal defining the "" closing tag then follows to end the boldfacing of text in the string;
again, the + operator adds this tag to the string being constructed.

To finish the construction of the new HTML, this code appends the result of the
htmlText.substr (sel.start + sel.length) statement to the string being constructed.
Note that (sel.start + sel.length) evaluates to a single argument to the substr method;
when you supply only one argument to the substr method, that argument is assumed to
specify the index position of the first character in a substring that includes all characters from
that position through the end of the string. Thus, the (sel.start + sel.length)expression
evaluates to the index position of the first character following the current selection, and the
htmlText.substr (sel.start + sel.length) statement returns all of the characters from
this position through the end of the string. Thus, using the + operator to append this expression
to the string being constructed appends the rest of the original text string to the new HTML
being constructed. At this point, evaluation of the expression to the right of the = sign is
complete, so the newly-constructed string is assigned to the htmlText variable.

To replace the selected element’s HTML representation with the newly-constructed HTML
code, pass the htmlText variable as the argument to the element’s setInnerHTML method, as
the following example does.

sel.element.setInnerHTML (htmlText)

You must call the document’s reparse method immediately after calling either of the
setInnerHTML or setOuterHTML methods. The HTML that these methods place in the source
document is not represented in the markup tree or in the active GoLive document until you call
the active document’s reparse method.

document.reparse();

The reparse method generates a new markup tree of objects representing the current set of
HTML elements the document defines and updates the document’s visual representation in the
GoLive environment.

94 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Whenever GoLive creates a new custom box, it calls your extension’s parseBox method once
for that box. GoLive creates a new custom box whenever it reads a tag. A variety of situations
can cause this to occur:

● GoLive reads a file containing markup tags.

● the user drops an Objects palette entry onto a GoLive document.

● the user pastes an element into a GoLive document.

● the user changes the size or location of an existing box in a GoLive document.

● GoLive generates a new markup tree, perhaps due to user interaction with the layout
window, or because a script called the reparse method.

When you generate a new markup tree, all JavaScript objects referring to the previous tree
become invalid; thus, your implementation of the parseBox method must update your
extension’s saved references to JavaScript objects.

NOTE: To ensure that GoLive can parse all elements successfully, calls to the parseBox
method are executed after a short delay.

With due caution, you can use the setInnerHTML and setOuterHTML methods to replace
virtually any element in the source document. However, you should exercise great care when
using these methods. setInnerHTML() replaces all text within the markup element. Calling
setInnerHTML("hello") on an would change the text to <hello>, and a tag
[whatever] would become [hello]. For binary tags, the text between the tag and its end tag is
changed, not the contents of the tag itself. The tag <object>sometext</object> would thus
become <object>hello</object>. The setOuterHTML() method replaces the entire tag
including the surrounding characters and an end tag with the given text.Calling
setOuterHTML ("hello") on would become hello, as the tag
<object>sometext</object> would become

Using setOuterHTML() or setInnerHTML() on tag elements is very dangerous and should be
avoided, since only the source buffer is updated. The entire markup tree may become invalid
when the content of a tag element is replaced; to avoid crashes, the document must be reparsed
immediately after any setInnerHTML or setOuterHTML method call, especially if that call
modifies a tag element.

IMPORTANT: To continue working with the markup tree after using setOuterHTML() or
setInnerHTML() on a tag element without reparsing is especially
dangerous—it leads to undefined results that are very likely to crash GoLive.

HTML tags inside a text element as in the above example are not visible in the markup tree
until the document is reparsed. Calling the method on non-HTML tags like text or comment
items does not invalidate the markup tree, but the changes are not visible until the document
has been reparsed. To reparse the current document, call the document.reparse() method.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 95

Supporting the Undo and Redo Commands

GoLive provides built-in undo support for dropping and resizing custom boxes. The user can
undo or redo such operations by choosing the Undo or Redo item from the Edit menu. For
other operations involving your custom element, you must implement undo support
yourself.The user cannot choose the Undo or Redo command to reverse the effects of other
interactions with your extension unless you implement code that provides this functionality, as
described in this section.

Creating the Undo Object

Each operation that can be undone must provide an Undo Object that holds the data used to
perform the operation, to undo its effects, and to redo its effects. Normally, you must create
this object from within the body of the function that performs the operation to be undone. This
function might be one of your own extension-specific functions or it might be your
implementation of an event handler function that GoLive calls. For example, your extension’s
controlSignal method might create an undo object that GoLive uses to undo changes to a
control’s current setting.

The boxResized function is an exception to this rule. Because GoLive provides built-in undo
support for dropping and resizing custom boxes, your boxResized method need not create its
own undo object.

NOTE: If your boxResized function creates its own undo object, it may interfere with the
built-in undo action GoLive already provides for the resizing operation. If this happens,
your script terminates with the runtime error message “There is already an open undo
action.”

For other operations, you’ll create an undo object by calling the createUndo method of the
Document Object from within the body of the function that performs the operation to be
undone. As the following example does, store the createUndo method’s return result in a local
variable.

96 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

// this extension calls the undoable fn from the controlSignal fn
function controlSignal(control) {

switch (control.parent.name){
{case "URL": setURL(control);break;
// other cases here...
}

}
// this extension initializes the current url value when the box is parsed
function parseBox (box) {

 box.url = "none";
}
// save old & new URLs into undo object & submit undo object to GoLive
function setURL (box,url) {

var undo = document.createUndo ("Set URL");
undo.kind = "Link";
undo.box = box.name;
undo.oldURL = box.url;
undo.newURL = url;
undo.submit(); // we set the URL on Do

}

GoLive uses the createUndo method’s argument to customize the display of Undo and Redo
items in the Edit menu; in this example, the Set URL argument causes GoLive to display Undo
Set URL and Redo Set URL menu items as necessary.

Initializing the Undo Object

The createUndo method creates an “empty” undo object. You must store in this object any
properties your function needs to perform an operation, undo its effects, or redo its effects. You
can add properties to the undo object by simply assigning them to it, as follows.

undo.kind = "Link";
undo.oldURL = box.oldURL;
undo.newURL = url;

The exact set of properties your undo object holds is an extension-specific implementation
detail. In this particular example, the undo object holds old and new URLs the user has
assigned to the custom element, but another function’s undo object could hold color values,
custom tags, or other kinds of data.

You’ll probably find it useful to add kind and name properties to your undo object:

● If your extension implements more than one command that can be undone, you’ll need to
implement a property that you can use to determine which command is to be undone; in
this example, the kind property serves that purpose.

undo.kind = "Link";

● You may also need to store something you can use to retrieve the undo object later, such as
a unique name property.

undo.boxName = box.name;

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 97

When you’ve finished adding properties to the undo object, pass it back to GoLive by calling
the undo object’s submit method, as follows.

undo.submit();

As soon as the undo object is submitted, GoLive makes it available to the user in the History
palette. If necessary, you can still add properties to an undo object even after it has been
submitted; however, this is recommended only for properties that cannot be stored within the
body of the function that creates the undo object.

Implementing the undoSignal Function

When the user chooses the Undo item or when you call the submit method, GoLive passes the
undo object to your extension’s undoSignal method, along with an action code indicating
whether your method should do the operation for the first time, undo the operation, or redo the
operation. The values of this action code and the states they represent are:

Your implementation of the undoSignal method utilizes the action code and previously-stored
undo object properties to respond appropriately; for example, your undoSignal function may
need to change the appearance of a custom box and manipulate the document objects and
markup elements it represents.

The kind property created and saved previously is used as the case expression in a switch
statement that customizes the actions of the undoSignal function according to the particular
undo object GoLive passes to it.

function undoSignal (undo,action) {
switch (undo.kind) {

case "Link":undoLink (undo, action); break;
// assume we’ve created these additional undo actions
case "TextColor":undoTextColor (undo, action); break;
case "What":undoSomethingElse (undo, action); break;

}
}

Because each case in an undoSignal function must handle three cases of its own (Do, Undo,
and Redo), you may improve the readability of your code by creating your own functions that
the cases of the undoSignal function can call to perform tasks.The next code example
illustrates such an approach. This undoLink function provides the code to undo a change in
the url property of a custom box.

0 Do. Undo object’s submit method was called. Do the
operation for the first time.

1 Undo . User issued the Undo command. Undo the operation.

2 Redo . User issued the Redo command. Reverse the effects
of the Undo operation.

98 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

function undoLink (undo, action) {
var box = boxes[undo.boxName];// get the real box behind the name
if (action == 1) {// undo

box.url = undo.oldURL;
else // do or redo

box.url = undo.newURL;
}

The first line of the body of this function retrieves the custom box that holds the url property
this function changes. To do so, it extracts the previously-saved boxName property from the
undo object passed to this function and uses this name to retrieve the box from the boxes array
GoLive maintains in the JavaScript global namespace. It then stores the retrieved box object in
the box local variable.

var box = boxes[undo.boxName];// get the real box behind the name

The function’s next action is conditioned on the value of the action code GoLive passes to it.
An action code value of 1 indicates that the user issued the Undo command, which means this
function must restore the box’s url property to its previous value. When the setURL function
created the undo object, it saved this value as the oldURL property. Thus, restoring the url
property of the box is straightforward—we simply assign the value of the undo object’s
oldURL property to the box object’s url property, as follows.

if (action == 1) {// undo
box.url = undo.oldURL;

else // do or redo
box.url = undo.newURL;

In this simple example, the url property can hold only two possible values, so this function
can treat the Do and Redo action codes exactly the same; of course, your functions can handle
the Do and Redo action codes separately if necessary.

IMPORTANT: Do not call the reparse, reformat, setInnerHTML, or setOuterHTML
methods of the Document Object from within an undo action.

Accessing the Document History

The Document.history property returns a History Object you can use to inspect or
manipulate the active document’s undo/redo history. Additionally, you can set the history list’s
index property to cause GoLive to execute any undo or redo actions necessary to restore the
document to the state that the specified index represents.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 99

6 Files

The File Object enables JavaScript code to read, write, create, delete, move, copy, and rename
files on local and remote file systems. Additionally, this object can return a list of the files
residing in a specified folder.

Creating a File Object

You can acquire a file object from the Application object, or you can create one yourself.

● Properties of the Application object provide File objects that reference commonly-used
directories such as the one that holds the GoLive application; for details, see the Built-in
Access to Commonly-Used Folders section.

● To access other directories or files, you must create your own File objects explicitly, as
described in the Creating A File Object Explicitly section.

Built-in Access to Commonly-Used Folders

The following properties of the Application Object provide File objects which refer to
commonly-used folders such as the application folder, system folder, and trash folder.

folder File A File object referring to the folder that holds the GoLive
application. Read-only.

currentFolder File Returns a File object referring to the current folder. May be
assigned a path name or a File object describing a folder.

settingsFolder File A File object referring to the folder that holds GoLive extension
modules and other settings. Read-only.

systemFolder File A File object referring to the folder that holds the operating system.
Usually, this is the C:\WINDOWS or C:\WINNT folder on Windows
platforms; on Mac OS platforms, this folder can have any name and
it can reside on any local disk or network volume.

tempFolder File A File object referring to the folder GoLive uses to store temporary
files. Read-only.

trashFolder File A File object referring to the system Trash folder. On Windows
platforms, this object refers to the local \RECYCLED directory. On
Mac OS platforms, this object refers to the startupDisk:Trash
folder. Read-only.

100 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Creating A File Object Explicitly

To create a file object explicitly, you can call the JSXFile global function or you can use the
new operator on the JSXFile constructor function, as in the following examples.

// global function
var theFileObject = JSXFile(fileOrFolderPathName)

// constructor
var theFileObject = new JSXFile(fileOrFolderPathName)

Both functions accept as their sole argument the name of the file or folder that the newly-
created file object is to represent. This argument may be specified as a partial path name, a full
path name, or a local URL. If you do not specify this argument as a URL, you must ensure that
your calls to the JSXFile constructor use the separator character and file-naming conventions
expected of that platform. At the minimum, this involves using a colon character (:) to
separate directories in Mac OS filenames, and using a backslash character (\) to separate
directories in Windows pathnames. If you specify no argument at all, the JSXFile constructor
creates a File object that refers to the current directory.

For example, if the current directory on a Windows machine is D:\GoLive, each of line of
code in the following example creates a File object that represents the D:\GoLive\main.html
file.

file = new JSXFile ("D:\\GoLive\\main.html");
file = JSXFile ("main.html");
file = new JSXFile ("file://d:/GoLive/main.html");

Testing For the Presence of a File or Folder

A newly-constructed JSXFile object holds only the full pathname of the file or folder it
represents. This file or folder does not necessarily exist—you might created a file object in
order to call methods that create the file or folder programmatically. To determine whether the
file object’s file or folder exists, you can test the value of the file object’s exists property. The
value of the exists property is true when the file or folder represented by the file object
exists.

Determining What the File Object Represents

To determine whether the file object represents a file or a folder, you can test the value of the
File object’s isFolder property. The value of the isFolder property is true when the
JSXFile object references a folder; when the value of this property is false, the JSXFile
object represents a file. The value of this property, too, does not indicate whether the file or
folder exists.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 101

Creating A Folder Programmatically

To create a folder programmatically, call the createFolder method of the File object that
represents that folder. This method creates a folder having the name and location specified by
the path name that the File object encapsulates.

Retrieving Files Programmatically

To retrieve files from the folder a JSXFile object represents, call the JSXFile object’s
getFiles method. If you call the getFiles method of a JSXFile object that does not
represent a folder, the method returns null.

Array fileObject.getFiles([String mask, String type])

This method returns an array of JSXFile objects. Each file object in the array corresponds to a
file having a name that matched the search criteria passed as the arguments to this method.

The mask parameter specifies a filename-search string that can contain wildcard characters
such as questions marks and asterisks. These wildcard characters are interpreted as on
Windows systems:

● An asterisk (*) represents zero or more occurrences of the item that precedes it in the
search string.

NOTE: To retrieve all files in a folder, you need not specify any search mask; by default, the
getFiles method uses a search mask that consists of the * character only.

● A question mark (?) represents zero or one occurrences of the item preceding it in the
search string

The optional type parameter specifies a Mac OS file type as a four-byte string, such as TEXT or
JPEG. Windows systems ignore this parameter.

Retrieving A File’s Location

A JSXFile object’s parent property holds a JSXFile object that represents the folder in
which the file resides. The value of this property is null for a file that resides in topmost folder
of the file system.

Moving Files and Folders

To move a file or a directory, call the move method of the JSXFile object that represents it. You
can specify the new location for the file as a pathname or as a local URL.

102 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

You cannot use the move method to transfer files to remote volumes; to upload files to a remote
server volume, use the put method of the JSXFile object that represents the file or directory to
upload. For more information, see “Uploading Files To Remote Volumes” on page 102.

Copying Files and Folders

To copy a file or a directory, call the copy method of the JSXFile object that represents it. You
can specify the new location for the file as a pathname or as a local URL.

You cannot use the copy method to transfer files to remote volumes; to upload files to a remote
server volume, use the put method of the JSXFile object that represents the file or directory to
upload. For more information, see “Uploading Files To Remote Volumes” on page 102.

Uploading Files To Remote Volumes

The get and put methods of the JSXFile object provide simple HTTP download and upload
services. With the help of these two methods, you can download a file, edit it, and then upload
it again. These methods require that the Network module be active; for information on
activating GoLive modules, see “Enabling the Extend Script Module” on page 26.

The get method retrieves a specified file from an HTTP server and stores it on disk under the
name stored inside the JSXFile object, while the put method uploads a file to an HTTP server.
The put method requires that the destination server be able to fulfill HTTP PUT requests.

Each of these methods accepts a remote URL as its argument. An optional second parameter
specifies the file’s MIME type.

When either of these methods return, the JSXFile object’s lastError property holds a string
that is the HTTP status text returned by the server, such as "200 OK", "201 Created" or "404
Not found".

You can set the lastError property to any string value; to ensure that this property contains
the latest error text, assign an empty string as its value before attempting a file I/O operation.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 103

7 Additional Topics

This chapter describes the folllowing additional programming topics:

● “Working With Pictures” on page 103

● “Timed Tasks” on page 104

● “Persistent Data” on page 104

● “Progress Bars” on page 105

● “Localization” on page 106

Working With Pictures

Currently, the SDK supports pictures only as Picture objects returned by the createPicture
global function.

Creating Pictures

To create a new Picture object, call the createPicture global function, as in the following
example.

myPicture = createPicture (url) // create Picture dynamically

You cannot create a valid Picture object by using the new operator on the Picture
constructor, as in the following example.

myPicture = new Picture (url) // not supported

Deleting Pictures

To delete a picture, do not use the delete operator; instead, call the disposePicture
(picture) global function, as in the following example.

myPicture = createPicture (url)

result = disposePicture (myPicture)

Releasing Saved JavaScript References

Before unloading your extension, GoLive calls its terminateModule function. Your
implementation of this function must release all of your extension’s saved JavaScript
references by setting to null the values of all global variables your extension creates.

104 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

For debugging purposes, there several ways you can force GoLive to unload your extension’s
scripts. See Chapter 8, “Debugging for information on

– Using the Reload Scripts and Unload CAPIs items that the JavaScript Output palette’s
menu provides.

– Using the unload function of the Module object to unload an external library.

Timed Tasks

A portion of Javascript code can be scheduled for a later execution. The global function
startTimer() accepts a scriptlet and a timeout. The scriptlet is stored internally and executed as
soon as the timeout has elapsed. Optionally, the scriptlet can be scheduled for repeated
execution so it is executed f.ex. every second.

The following code would print a counter in the Javascript Output window every second:

counter = 0; myTimer = startTimer ("writeln (++counter)", 1000, true);

To stop this code, use the following statement:

stopTimer (myTimer);

Persistent Data

Extension modules can create their own preference data which is maintained for all extension
modules and is persistent across multiple runs of GoLive. This feature enables all extensions
to share a common set of preferences and to store persistent data. The preferences are accessed
via the global object prefs. The properties of this object are all stored as preferences, so
creating a new preference value is as easy as writing to a prefs property. If, for example, one
module executed the code

prefs.myModule = "Version 1.0";

All other modules can check for the presence of this module with the code

if (prefs.myModule == "Version 1.0")...

The preference value is saved to disk along with all other preference data and is available to
the scripts when GoLive is started for the next time. Javascript objects cannot be saved.

The GoLive Extend Script SDK has limited read-only access to the GoLive preferences. These
preferences may be accessed via the app.prefs object.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 105

Progress Bars

To display user feedback during lengthy operations, your extension can use the progress bars
and busy indicators built into GoLive.

FIGURE 7.1 Progress Bar

FIGURE 7.2 Busy Bar

Three methods of the Application Object provide these services:

● startProgress() initializes and displays the bar.

● setProgress() updates the status bar or busy bar display.

● stopProgress() hides the progress bar.

Application.startProgress() takes four parameters. The first is the window title. The second is
the optional initial status message. The third parameter is a boolean value indicating whether a
progress bar or a busy bar should be displayed. If the parameter is true, a busy bar is used. The
last , optional parameter takes the number of seconds which should pass before the window
pops up. Setting this value to, say, two seconds does not display the window when an
operation takes less than two seconds.

To display the progress of an operation and to scan the status of the Stop button, call the
method Application.setProgress(). When displaying a progress bar, the first parameter is the
progress value, which must be a value between 0 and 1. The second, optional parameter is a
new status message. When used with a busy bar, there is no need to supply any parameters
unless you want a different status message to be displayed. In this case, the progress value is
ignored. This method also rotates the barbershop indicator about once a second. When the user
clicked the Stop button, this method returns false. You should call this method freuqntly during
your lengthy operation to show the user that the program still is alive.

Finally, when you are done with you task, call Application.stopProgress() which hides the
progress bar again.

106 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The code snippet below illustrates the use of a progress bar. The bar is upated once a second
for ten seconds. It makes use of the startTimer() function to start the delayed execution of the
updating routine.

progress = 0;

function progressDemo() {
progress = 0;
app.startProgress ("Please wait", "Starting");
startTimer ("doProgress()", 1000);

}

function doProgress() {
progress += 0.1;
if (!app.setProgress (progress, "Progress: " + progress*100 + "%"))

app.stopProgress(), writeln ("Aborted!!");
if (progress > 1)

app.stopProgress();
else

startTimer ("doProgress()", 1000);
}

Localization

The Adobe GoLive SDK provides certain facilities which makes it easy to localize an
extension. All messages, labels, window titles and menus normally display their text as defined
in their tags. JavaScript messages are displayed as the script puts them together.

All of these texts and messages may be predefined to use different languages if desired. The
SDK is capable of detecting the language in which Adobe GoLive runs. A module may contain
a table which again contains translations for the strings in this module. This table is the content
of the jsxlocale tag, which has no other function than to define a translation table.

The table itself needs to be set up in a well-defined way. The top row contains the language
codes for each table columns. These codes are equivalent to the ISO-3166-1 language codes
used widely in the Internet. For English messages, the country code "US" is used (all English
spaking countries, please forgive this simplification). For German messages, "DE" is used,
"FR" stands for French and so on. Since the default for all messages inside GoLive is English,
the leftmost column must contain the English messages together with the country code "US".

A typical translation table would look like the one Table 7.1 depicts.

TABLE 7.1 Translation table example

US DE NO

Are you sure? Sind Sie sich sicher? Er du sikker?

Search Suchen Start søk

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 107

When the extension module loads, it first loads this translation table. On each string the
module loads, the contents of the string are checked against the US definitions in the table and
the locale ID found inside GoLive. If a match is detected, the string is replaced. In above
example, a button with the following definition

<jsxcontrol type="button" name="srch" value="Search">

would display "Suchen" on a German version of GoLive and " Start søk" on a Norwegian
version. It should mentioned that the SDK removes all leading and trailing whitespace from
the messages, and that the message comparison is case-sensitive. If you would have used
"search" instead of "Search" in above table, the button would not have been translated.

When a script wants to used localized messages, it can use the method Module.localize
(message) to translate a message. If a script wanted to confirm an action, it would, using the
above table, use the following code:

if (confirm (module.localize ("Are you sure?"))) ...

This would return "Sind Sie sich sicher?" on a German GoLive. To get the current country
code, a script can check the property Module.locale. This property is read/write, but assigning
a different country code only changes the behavior of the localize() method within the affected
module; menus or dialog contents are not changed.

For testing purposes, the GoLive setting for the country code can be overridden by specifying
the locale attribute within the jsxmodule tag. The country code set there is valid for all menu,
dialogs, and messages within the module.

When the GoLive SDK cannot find a translation for a given string, it attempts to find the string
within the string database of GoLive itself. Therefore, many strings may be auto-translated
without having to define them inside the module.

If desired, any translation can be turned off by setting the locale attribute to NONE.

For code examples of localization features, see the Custom Box and Menus and Dialogs
samples .

108 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 109

8 Debugging

This chapter describes the JavaScript debugging tools that the SDK provides:

● The Debugger Object ($) is the source debugger’s agent in the JavaScript runtime
environment. This object provides information about the current JavaScript environment
and manipulates breakpoints programmatically.

● The JavaScript Shell Palette provides a command line and output view you can use to
execute JavaScript code interactively in the scope of a specified module.

● The Integrated JavaScript Source Debugger is a fully-featured debugger that provides a
detailed breakpoints listing, step tracing, an interactive JavaScript command line, and the
ability to edit live JavaScript objects from within breakpoints.

Integrated JavaScript Source Debugger

By default, all debugging services are disabled. If no module enables the integrated debugger,
the $ object, the JavaScript Shell palette and the integrated debugger are not available.

Enabling The Integrated Debugger and Other Debug Services

Each extension that is to use the integrated debugger must add the valueless debug attribute to
its <jsxmodule> tag, as in the following example.

<jsxmodule name=myCoolExtension debug>

The debug attribute activates the integrated debugger for its own module only; however, once
any module activates the integrated debugger, the JavaScript Shell palette and the $ object
become available to all extensions, even those that do not specify the debug attribute.

A module that activates the integrated debugger displays the Script Debugger Window shown
in Figure 8.1 automatically whenever GoLive encounters a runtime error or a breakpoint in
any of the module’s scripts. When GoLive encounters the error or breakpoint, script execution
halts and the Script Debugger Window displays the current line of Javascript source and the
current stack trace.

Script Debugger Window

This section describes the information and controls that the main Script Debugger window
provides.

110 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Viewing Debug Information

The GoLive Script Debugger window provides three informational views that Figure 8.1
depicts.

FIGURE 8.1 Script Debugger window

The current stack trace appears in the upper-left pane of the script debugger window. This
stack trace view displays the calling hierarchy at the time of the breakpoint. Double-clicking
a line in this view changes the current scope, enabling you to inspect and modify scope-
specific data.

All debugging output appears in the upper-right pane of the script debugger window.
Specifically, output from the print method of the $ object appears in this debug output view.

The currently-executing JavaScript source appears in the lower pane of the script debugger
window. Double-clicking a line in this JavaScript source view sets or clears an unconditional
breakpoint on that line; that is, if a breakpoint is in effect for that line, double-clicking it clears
the breakpoint, and vice-versa.

Controlling Code Execution in the Script Debugger Window

This section describes the buttons that control the execution of code when the Script Debugger
window is active. Most of these buttons also provide a keyboard shortcut available as a Ctrl-
key combination on Windows platforms or a Cmd-key combination on Mac OS platforms.

Stack Trace view

Debug Output view

JavaScript Source view

Resume (R)

Step Into(T)
Step Out (U)

Script Breakpoints Display

Pause (P)

Stop (K) Step Over (S)

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 111

Resume
Cmd-R (Mac OS)
Ctrl-R (Windows)

Resume execution of the script with the script debugger window open. When the script
terminates, GoLive closes the script debugger window automatically. Closing the debugger
window manually also causes script execution to resume. This button is enabled when script
execution is paused or stopped.

Pause
Cmd-P (Mac OS)
Ctrl-P (Windows)

Halt the currently-executing script temporarily and reactivate the script debugger window.
This button is enabled when a script is running.

Stop
Cmd-K (Mac OS)
Ctrl-K (Windows)

Stop execution of the script and generate a runtime error. This button is enabled when a script
is running.

Step Into
Ctrl-T (Mac OS)
Cmd-T) (Windows)

Halt after executing a single JavaScript statement in the script or after executing a single
statement in any JavaScript function the script calls.

Step Over
Ctrl-S (Mac OS)
Cmd-S (Windows)

Halt after executing a single JavaScript statement in the script; if the statement calls a
JavaScript function, execute the function in its entirety before stopping.

Step Out
Ctrl-U (Mac OS)
Cmd-U (Windows)

When the debugger is paused within the body of a JavaScript function, clicking this button
resumes script execution until the function returns. When paused outside the body of a
function, clicking this button resumes script execution until the script terminates.

Script Breakpoints Display
(no keyboard shortcut)

Clicking this button displays the Script Breakpoints Window shown in Figure 8.2.

112 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Using the JavaScript Command Line Entry Field

You can use the Script Debugger window’s command line entry field to enter and execute
Javascript code interactively within a specified stack scope. Commands entered in this field
execute with a timeout of one second. If a command takes longer than one second to execute,
GoLive terminates it and generates a timeout error.

Command line entry field . Enter in this field a JavaScript statement to execute
within the stack scope of the line highlighted in the Stack Trace view. When
you’ve finished entering the JavaScript expression, you can execute it by

clicking the command line entry button or pressing the Enter key.

Command line entry button. Click this button or press Enter to execute the JavaScript
code in the command line entry field. GoLive executes the contents of the command line
entry field within the stack scope of the line highlighted in the Stack Trace view.

The command line entry field accepts any JavaScript code, making it very convenient to use
for inspecting or changing the contents of variables. For example, in the display that
Figure 8.1 depicts, you could inspect and set properties of the box object, such as its width.

NOTE: To list the contents of an object as if it were JavaScript source code, enter the
object.toSource() command.

Setting Breakpoints

You can set breakpoints in the debugger itself, by calling methods of the $ object, or by
defining them in your JavaScript code.

Setting Breakpoints In the Script Debugger Window

When the GoLive Script Debugger window is active, you can double-click a line in the source
view to set or clear a breakpoint at that line. Alternatively, you can click the BP button to
display the Script Breakpoints window and set or clear breakpoints in this window as decribed
in “Setting Breakpoints in the Script Breakpoints Window” and in “Clearing Breakpoints in
the Script Breakpoints Window” on page 114.

Setting Breakpoints in JavaScript Code

Adding the debugger statement to a script sets an unconditional breakpoint. For example, the
following code causes GoLive to halt and display the script debug window as soon as it enters
the parseBox function.

function parseBox(box) {
// break unconditionally at the next line

debugger;
box.width = (box.element.width == undefined) ? 48 : box.element.width;
box.height=(box.element.height==undefined) ? 48 : box.element.height;
box.url = (box.element.src == undefined) ? "none" : box.element.src;
box.link = box.createLink(box.url);

}

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 113

To set a breakpoint in runtime code, call the $.setbp() method, as the following example
does.

function parseBox(box) {
box.width = (box.element.width == undefined) ? $.setbp() : box.element.width;
box.height=(box.element.height==undefined) ? $.setbp() : box.element.height;
box.url = (box.element.src == undefined) ? $.setbp() : box.element.src;
box.link = box.createLink(box.url);

}

This example breaks if any of the width, height, or src attributes of the custom element are
undefined. Of course, you wouldn’t put setbp method calls into commercial code—it’s more
appropriate for shipping code to set default values for undefined properties, as the previous
example does.

Script Breakpoints Window

This section describes the information and controls that the Script Breakpoints window
provides. Display of the Script Breakpoints window is controlled by the Script Breakpoints
button in the main Script Debugger Window described on page 109.

FIGURE 8.2 Script Breakpoints window

This dialog displays all defined breakpoints.

This dialog does not display

● Breakpoints defined by the debugger statement in JavaScript code.

● Temporary breakpoints.

Breakpoint at line 28

List of current breakpoints

Scriptlet field

Line field

Condition field
Repeat count field

114 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The Script Breakpoints window provides the following controls:

● The Scriptlet field shows the name of the scriptlet that defines the breakpoint. This is the
name used when the scriptlet was added to the engine.

● The Line field contains the line number of the breakpoint within the scriptlet.

● The Condition field may contain a Javascript expression to evaluate when the breakpoint is
reached. If the expression evaluates to false, the breakpoint is not executed.

● The Repeat count field contains the number of times that the breakpoint must be reached
before it is actually executed.

Breakpoints set in this window persist across multiple executions of a script.

Setting Breakpoints in the Script Breakpoints Window

Take the following steps to set a breakpoint in the Script Breakpoints Window:

1. Enter a scriptlet name in the Scriptlet field

2. Enter a line number in the Line Number field.

3. Optionally, enter a condition such as (i>5) in the Condition field.

4. Optionally, enter in the Repeat Count field the number of times the specified line must
execute before GoLive breaks into the debugger.

5. Click the OK button to set the breakpoint

Editing Breakpoints in the Script Breakpoints Window

Clicking a breakpoint in the breakpoints list copies its data into the edit fields at the bottom of
the Script Breakpoints window. You can modify the contents of any of these fields to edit
values in running code:

Clearing Breakpoints in the Script Breakpoints Window

Take the following steps to clear a breakpoint in the Script Breakpoints Window:

1. Select the breakpoint from the breakpoints list.

2. Press the Delete key.

3. Click OK to accept the changes and dismiss the Script Breakpoints window..

Debugger Object ($)

The $ Object (Debugger Object) is present at all times. It provides properties and methods you
can use to debug your JavaScript code; for example, you can call its methods to set or clear
breakpoints programmatically, or to change the language flavor of the script currently
executing in GoLive. It also provides properties that hold information about the version of the
host platform’s operating system and the flavor of JavaScript currently in use by GoLive
Extend Script.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 115

JavaScript Shell Palette

When at least one module enables debugging services by providing the valueless debug
attribute in its <jsxmodule> tag, the Window menu contains the Javascript Shell palette that
Figure 8.3 shows.

FIGURE 8.3 JavaScript Shell Palette

The Javascript Shell palette provides a command line you can use to execute JavaScript code
in a specified scope interactively.

The Javascript Shell palette also provides an output view JavaScript code can use to display
data. Your extension can call the write or writeln global functions to display data in this
view. The clearOutput global function erases the contents of the output view.

The Javascript Shell palette also provides a palette menu that always holds at least three
entries:

Clear Text erases the contents of the output window.

Reload Scripts reloads the Javascript code of all currently-loaded extension modules. This
command never reloads static data, which is defined in the Main.html file by tags like
<jsxmenu>. It reloads only the contents of <script> tags. Objects and variables currently
defined within the Javascript engine are unaffected by this command. This command does
not call the initializeModule global function. To reload an extension completely, you
must quit GoLive and restart it.

Unload Binary Modules unloads all binary modules. Subsequently, GoLive reloads each
binary module on demand when a function in the module is called from JavaScript.

The palette menu is also populated with menu items representing currently-loaded extension
modules. Selecting a module name from the palette menu specifies the module scope
(extension) in which to execute the contents of the JavaScript command line.

NOTE: If the JavaScript shell window does not respond to command line input, look for the
name of the current module in the lower-left corner. If it does not appear there, no
modules currently enable debugging services. Debugging services are enabled only
when at least one Extend Script module contains the debugger statement or the debug
attribute to <jsxmodule> tag.

Command line

Execution scope
Output view

116 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 117

Part II

Reference

118 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 119

9 Tags

This chapter provides reference information for all of the markup tags the GoLive Extend
Script SDK provides.

Modules

jsxmodule

<jsxmodule>

This optional tag defines the name of the Javascript module. This name can be checked as the
Javascript variable module.name. The name attribute is responsible for defining that name. If
the tag or the name attribute is missing, the module name is the name of the folder where the
main.html file of the module is located. The debug attribute, when present, enables the
integrated debugger. The JavaScript statement debugger; acts as a breakpoint when the
integrated debugger is active.

The tag has the following attributes:

name the Javascript name of the module.

debug if this attribute is present, the module is in debug mode. The Javascript Output
palette window is enabled, as well as the Javascript statement debugger

timeout Number of seconds the JavaScript engine waits for a response from the
currently-running JavaScript code. If this amount of time elapses without a
response from the currently-running JavaScript code, GoLive generates a
timeout runtime error, stops waiting for a response, and exits the script. By
default, the GoLive engine waits indefinitely for JavaScript code to return.
Your module can specify the amount of time GoLive waits for its JavaScript
code to return by setting this attribute to a number of seconds between 0 and
9999. Setting this attribute to 0 seconds or a boolean value of false causes
GoLive to wait indefinitely for this module’s code to return. GoLive always
waits indefinitely for its calls to your Event-Handling Functions to return.
The code that sets the global default timeout value runs once when GoLive
initializes all the modules in the Extend Scripts folder at startup time

locale Defines a locale which should be used to translate all strings inside the
module. This value overrides the locale setting of GoLive itself. Valid values
are ISO-3166-1 country codes as used as Internet top level domains, like DE
for Germany or IT for Italy. For all flavors of English, US is used. Although
mainly usable for testing purposes, all auto-translation features inside the
module can be disable by setting the value to NONE.

120 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Locales

jsxlocale

<jsxlocale> localizationTable </jsxlocale>

This tag is a container for a table which defines translations for the strings an extension uses in
menu items, dialogs, and so on. For more information, see “Localization” on page 106.

Dialogs

A dialog is an HTML form embedded within a <jsxdialog> tag. This form may hold a number
of controls, each defined as <jsxcontrol> tags. When a dialog executes and the user changes
the state of a control, GoLive calls the method controlSignal() with the affected control object
as parameter. Here, the state of the control may be monitored and/or updated. A dialog is
executed by calling its runModal() method, which invokes the dialog as a modal dialog. The
return value of this method depends upon which button was clicked to close the dialog, or the
argument supplied to the exitModal method.

The size of the dialog is either set in the width and height attributes of the <jsxdialog> tag or
are extracted from the first embedded <table> tag. The positions of the controls are set by the
posx and posy attributes of the corresponding <jsxcontrol> tag.

The user clicks a button to terminate a dialog. These buttons can have predefined names that
GoLive recognizes as buttons which close the dialog, or they can dismiss the dialog by calling
the exitModal method from their case in your implementation of the controlSignal method.
Using "dialogok" defines the button to be the OK button. The name "dialogcancel" defines a
button to be the Cancel button, and the name "dialogother" defines the button to be able to
close the dialog without showing the specific behaviors of an OK or Cancel button. No other
control can close a dialog.

Clicking a button with one of these specific names cause the runModal() method to return one
of the following values:

dialogcancel 0

dialogok 1

dialogother 2

There are three possible different kinds of dialogs. The modal dialog is defined with the
<jsxdialog> tag. A non-modal dialog is defined with the <jsxpalette> tag. This dialog can
never be terminated. Finally, the <jsxinspector> tag creates an inspector dialog which is used
together with custom drag-and-drop boxes.

Every control within a dialog is either accessible via its name as a property of the Dialog
object or as part of the array controls of the Dialog object. All controls defined in the entire
module are accessible via the global array controls as well.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 121

jsxdialog

<jsxdialog name="objectName" title="Title Of Dialog" width="anInteger"
height="anInteger" > </jsxdialog>

The <jsxdialog> tag wraps the dialog form. The dialog itself is a table, where the width and
height attributes determine the size of the dialog window. Several controls may be placed
within this grid by inserting <jsxcontrol> tags into the dialog. The dialog object is stored into
the dialogs array of the document and may be accessed there. It contains the method
runModal(), which causes the dialog to execute as a modal dialog. The name attribute defines
the JavaScript name of the dialog.

To close the window and to terminate the dialog, a button with a special name needs to be
created. When this button is clicked, the dialog is closed and a numeric value corresponding to
the button name is returned by the runModal() dialog.

A dialog is either accessible via its name as a property of the global namespace or as a part of
the global dialogs array.

The tag has the following attributes:

name the Javascript name of the dialog. The dialog is also part of the global dialogs array
where it may be accessed via this name.

title the title of the dialog window (Windows only).

width the width of the dialog; may be overridden by an embedded <table> tag.

heightthe height of the dialog; may be overridden by an embedded <table> tag.

jsxpalette

<jsxpalette name="objectName" title="Title Of Palette" menu="anInteger"
width="anInteger" height="anInteger" >

// to define a palette menu add <jsxmenu> and <jsxitem> elements here
</jsxpalette>

The <jsxpalette> tag creates a so-called palette window. This is a floating window like the
Inspector window. Its title is displayed in the Window menu so the user can open and close the
window like any other palette window. A palette window has an associated menu which is
displayed as a pull-down menu in the upper right corner of the palette window.

A palette is either accessible via its name as a property of the global namespace or as a part of
the global dialogs array.

The following attributes are defined:

name The Javascript name of the dialog. The dialog is also part of the global dialogs array
where it may be accessed via this name. Since palettes are a global resource, use distinctive
names if possible.

title The title of the palette window. This text also appears in the Window menu.

order The sort order of the menu. This is a number which indicates where in the Window
menu this item should appear. The higher the number is, the lower down in the Window menu

122 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

the item appears. See the table in Appendix A for details. Values greater than 9999 cause
undefined results.

jsxcontrol

<jsxcontrol
type="KindOfControl" name="JavaScriptName"
value="InitialValue" group="groupID"
posx="NumOfPixels" posy="NumOfPixels" width="NumOfPixels"
height="NumOfPixels" halign="SeeReference" valign="SeeReference" >
</jsxcontrol>

A control tag contains several attributes which define the position, alignment, and type of the
control:

name the Javascript name of the control.

type the type of control:

button pushbutton

checkbox check box

check check box

radiobutton radio button

radio radio button

edit edit field which signals a change when the input focus changes if the
edit field’s contents have changed; that is, changing focus without
changing content does not signal a change.

buttonedit edit field that signals a change when the input focus changes and the
contents of the field have changed. Optionally, this control can display an Enter button.

editarea multiline edit field

static static text field

color color select field

urlgetter URL entry field

popup popup menu

list list box

 listbox list box

custom owner-draw control (see below)

valueThe initial value for all controls. Popup and list box controls accept a comma-separated
list of items which they are able to display.

groupthe group ID for radio buttons. All buttons with the same ID are automatically turned off
when one button is selected. If the attribute is omitted, the button is not affected by other
buttons. The group ID is an arbitrary string value. It is valid for all controls within the same

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 123

extension; it would affect controls within other dialogs and the same group ID, so choose these
IDs carefully.

posx, posythe upper left corner of the control in the dialog window. When the user drops the
control on a table grid in layout mode, GoLive updates these attributes to reflect the position of
the control on the page. This makes it easy to create f.ex. an inspector by dropping the controls
on a table grid and moving them into position.

width, heightthe size of the control

halign the horizontal alignment of the control when the size of the window changes:

left left-aligned

center centered

right right-aligned

scale autoscaled

valign the vertical alignment of the control when the size of the window changes:

top top-aligned

center centered

bottom bottom-aligned

scale autoscaled

The alignment defines how the starting coordinates and the size of a control are affected when
the size of the dialog changes. Thus, the starting coordinates of a control are always related to
the predefined size of the dialog and should be computed relative to this size.

Custom controls may be coded entirely in Javascript (although this may be a bit tedious). To
draw such a control, GoLive calls the method drawControl() with the control to draw
whenever necessary.

When the user clicks a custom control, GoLive calls the Javascript method mouseControl(),
again with the control that was clicked as the first parameter. There are three additional
parameters:

x, y the location of the mouse cursor relative to the top left of the control

mode the mode. 0 means that the button was pressed, 1 means that the mouse was moved
while the button was pressed, and 2 means that the mouse button was released. The code
should call the control object's refresh() method to reflect a changed state due to the action of
the mouse. When the mouse button was released, the Javascript method controlSignal() may
be called as well as any other action.

When mouseControl() is not present, controlSignal() gets called instead when the mouse
button is released over a custom control.

You can access any control in three ways

● by means of the name property of the Dialog object that contains it,

● as an element of the controls array of that Dialog object,

● by means of the global dialogs array.

124 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Palette Items and Foreign Tags

The GoLive palette can easily be extended with new items which may be dragged and dropped
like any other palette item. There are several tags which are needed to create a new palette. The
<jsxpalettegroup> tag creates a new tab inside the palette which is then filled in with a number
of <jsxpalettentry> tags. Each of these tags is a placeholder for a custom box which is defined
with the <jsxelement> tag. Finally, the <jsxinspector> tag is used to create a dialog which
serves as the inspector for that specific box. The necessary icons for the palette as well as
necessary pictures to draw the box may be defined using the widely known tag.

When a palette with the corresponding entries has been defined and the user drags one of these
entries into the document, GoLive creates an empty box and places this box into the document.
In order to draw the box, GoLive calls the Javascript method drawBox() with the Box object to
be drawn as parameter. This method may use the global Draw object to draw its contents.

When the box has been resized, either by dragging at the box's borders or by entering data into
the inspector dialog, GoLive calls the Javascript method boxResized(). This method receives
three parameters, the box object itself, the new width, and the new height. The method should
update the markup elements of the box besides of doing eventual calculations by itself.

Finally, the extension needs to set up the box when a HTML document containing the box has
been read. To do so, GoLive calls the parseBox function, passing the box object as this
function’s argument. This method should check the markup elements of the box and adjust the
look and feel of the box according to the settings of its markup values.

It is also possible to support non-HTML tags like ASP or PHP3 tags. The type attribute of the
<jsxelement> tag allows you to specify the character that acts as tag delimiter. For example, if
you specify % as the value of your jsxelement tag’s type attribute, the SDK considers any
string beginning with the % character to be a tag. Additional type values are:

container or binary for boxes containing more HTML,

bracket for bracketed tags like [hello],

percent for tags enclosed in double percent signs like %%hello%%,

ssi for Server Side Includes,

plain for a standard tag.

The first word of the tag content is recognized as tag name. For example, the following
declaration defines a handler for the SSI #include tag.

<jsxelement tagname="include" classid="someID" type="ssi">

This would cause GoLive to create a visual "include" box for a tags with the following
content:

<!--#include virtual= http://www.adobe.com/test.js -->

When using nonstandard tag delimiters, however, access to the tag attributes as properties of
the markup element is not possible, since these tags may contain any content. The content of
these tags have to be interpreted by hand by calling the getInnerHTML() method of the
markup element to retrieve the associated ASCII text.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 125

The utility method split() of a markup element provides a similar functionality as the
standard method String.split(). It splits the inner HTML into an array of strings, using
either the blank or a supplied character as the word separator. Unlike String.split(), however,
words in single or double quotes are recognized as strings. Use the method Array.join() to
concatenate the contents of this array into a string which then can be used to set the inner
HTML of the tag

To change the settings of the Web database, which controls how GoLive treats foreign tags, the
Application object provides the properties scanBrackets, which allows to turn the scanning
of [tags] on or off, symmetricTokens and asymmetricTokens which define which characters
the GoLive scanner recognizes together with the < character as tag separators. Changing these
settings change the settings inside the Web database; the settings are not saved unless someone
explicitly opens the Web database and saves its contents.

jsxpalettegroup

<jsxpalettegroup
name="objectName" display="tabName"
tabOrder="anInteger" order=anInteger >
picture="tabIcon"

</jsxpalettegroup>

The <jsxpalettegroup> tag defines a new tab in the Objects palette. It has several attributes:

name the name of the palette group. This is either one of GoLive's predefined names or the
name of a new palette group (case sensitive). The predefined names are:

Basic basic elements (images, plug-ins, scripts, and so on.)

Head head items

Framesframe elements

Customcustom items

Forms form elements

Project Site elements

CSObjectsactions

WO WebObjects

displaythe name displayed to the user

tabordera number that describes the position of the tab for the palette group. The higher this
number is, the further to the right the tab will be placed. This number may be omitted if a
predefined group name was selected. For a listing of the taborder values of built-in tabs, see
“Objects Palette Entries” on page 196.

orderthe display order of the element within the selected palette. The higher the number, the
further right the element will be displayed. The highest valid value is 32767.

pictureThe name of an image to be used as icon in the tab. This icon is scaled to a size of
12x12 pixels.

126 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

jsxpalettentry

<jsxpalettentry
display="DescriptionOfTag" classid="customTagName"
picture="paletteIcon">
<customTagName
HTMLContentOfCustomTagHere>

</jsxpalettentry> // end of custom palette entry

This tag defines a palette entry within the palette group. The attributes of the <jsxpalettentry>
tag are:

display the name of the element displayed to the user.

classid the class name of the markup element.

picture the icon which is displayed in the palette. This icon is scaled to a size of
24x24 pixels.

In your implementation of this tag, the <customTagName HTMLContentOfCustomTagHere>
text is replaced by the exact HTML content this palette entry is to insert into the GoLive
document. This content is a custom tag defined by the <jsxelement> tag. The jsxelement tag
defines only the name of your custom tag; the default attributes your custom tag provides, as
well as their values, are defined by this jsxpalettentry element. If the tag contains width
and height attributes, Go Live uses them to set the size of the box it creates to represent the
custom element.

img

The Extend Script SDK provides its own version of the widely-known tag. The SDK
adds two attributes which are used to provide O/S specific loads of images.

name the name of the image

src the URL of the image source. If the winsrc (for Windows) or the macsrc (for the
Macintosh) attribute is not present, this URL is used to load the image.

winsrcthe URL of the image source in a Windows environment.

macsrcthe URL of the image source in a Macintosh environment.

jsxelement

<jsxelement
tagName="nameOfCustomTag" classid="jsxpalettentryID" type="seeBelow"
leftMargin="numOfPixels" rightMargin="numOfPixels"
topMargin="numOfPixels" bottomMargin="numOfPixels"
invisible="boolean" fixedWidth=numOfPixels fixedHeight=numOfPixels >

</jsxelement>

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 127

This tag is used to describe the markup element which the palette entry can drag. It is located
inside the document body along with any or <script> tags. This tag has a few attributes
which control the type of box being displayed for the element. These attributes are not to be
confused with the attributes of the custom tag the <jsxelement> tag defines—the attributes of
the custom tag are defined by the <jsxpalettentry> element that specifies the content the
custom tag adds to the page.

tagname the name of the tag that this <jsxelement> defines.

classid unique identifier associated with the tagname tag. This value must match
the classid attribute of the <jsxpalettentry> and <jsxinspector> tags
associated with the custom tag this <jsxelement> tag defines.

type The tag type, which is one of the following:

binary a binary tag which may contain any HTML code. The code is
not displayed and must be maintained programmatically.

container A binary tag which may contain any HTML code. The code is
displayed inside the box, which should have some margins set. The
drawBox() function draws the box margin only.

plain a standard tag. The optional attribute value denotes the width of the box

ssi server side includes; a comment that begins with a pound sign (#)

bracket a bracketed tag, like [hello]

percent a tag surrounded with double percent signs

x a tag beginning with <x, where x is an arbitrary character.

leftMargin the left margin of the generated container box.

rightMargin the right margin of the generated container box.

topMargin the top margin of the generated container box.

bottomMargin the bottom margin of the generated container box.

invisible the tag is invisible like f.ex. a comment tag. The menu command "Edit/hide
invisible items" toggles the display of this tag on or off.

fixedwidth if present, the box cannot be resized horizontally. This is the default for
container boxes. This attribute can be used with or without a value; if a
value is supplied, it denotes the width of the box.

fixedheight if present, the box cannot be resized vertically. This is the default for
container boxes.This attribute can be used with or without a value; if a value
is supplied, it denotes the height of the box.

128 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

jsxinspector

<jsxinspector name="objectName" title="nameInWindowMenu"
classid="yourUniqueID" width="anInteger" height="anInteger" >

// jsxcontrol tags that provide inspector window controls go here

</jsxinspector>

This tag defines the inspector dialog for the dropped box. Since an inspector simply is a
special form of a dialog, its attributes, structure, and behavior is identical to the <jsxdialog>
tag. Since all inspectors share the same window, the <table> tag which usually defines the
window size can be ignored safely.

When a custom box is selected, GoLive activates its inspector window. Before displaying the
window, GoLive calls the inspectBox method, passing the selected box as its argument. Your
implementation of this method initializes the elements of the inspector with the current data.

When the user manipulates controls in the inspector, GoLive calls the controlSignal method
just as it would for any other dialog, passing the control that changed as the argument to this
method. Your implementation of this method alters the corresponding elements of the box as
well as the HTML/XML representation of its code.

An inspector is either accessible via its name as a property of the global namespace or as a part
of the global dialogs array.

The <jsxinspector> tag has the following attributes:

name the Javascript name of the inspector. The inspector is also part of the global dialogs array
where it may be accessed via this name.

title the title of the inspector dialog.

classidthe class name of the box which this inspector is responsible for. This name must match
the classid attribute of the <jsxpalettentry> and <jsxelement> tags.

Custom Element Example

The following example defines the tag <showboat>. This tag has the attributes width, height,
and image, which defines an image to be displayed. The tag is represented by a plain box
without any margins:

<jsxelement tagName="showboat" classid="boat" type="plain">

The box representing this tag should be draggable from a palette. We need, therefore, the
following:

an icon 12x12 pixels for the palette tab

an icon 24x24 pixels representing the box to drag

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 129

The code to define the palette entry goes here:

<jsxpalettegroup name="ShowBoats" display="ShowBoats"
 taborder="3000" picture="tabIcon">

<jsxpalettentry display="ShowBoat" classid="boat"
 picture="entryIcon">

<showboat width="100" height="50" image="none">
</jsxpalettentry>

</jsxpalettegroup>

You should define an inspector for the box. This inspector contains an URL getter control to
alter the URL for the image attribute:

<jsxinspector name="insp" classid="boat" title="ShowBoat inspector"
width=100 height=100>

<jsxcontrol name="image" type="urlgetter" posx=10 posy=10>
</jsxinspector>

Finally, we need to set up a number of Javascript methods. These methods should normally
check for the right box class and control names, but this is omitted here for clarity.

parseBox()parses the HTML tag when the file is read.

drawBox()draws the box. Here, we draw the image or a circle if there is no image.

boxResized()reacts on changes of the box size. Here, we update the width and height
attributes.

inspectBox()sets up the URL of the image in the inspector.

function parseBox (box, reason) {
var value;
value = box.element.width;
box.width = value == undefined ? 100 : value;
value = box.element.height;
box.height = value == undefined ? 100 : value;
box.url = box.element.image;
box.link = box.createLink (box.url);

}
function drawBox (box, draw) {

if (!box.pic)
draw.frameOval (0, 0, box.width, box.height);

else {
box.pic.width = box.width;
box.pic.height = box.height;
box.pic.drawAt (0, 0);

}
}
function boxResized (box, width, height) {

box.element.width = width;
box.element.height = height;

}

130 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

function inspectBox (box) {
box.inspector.setLink (box.link);
myBox = box;

}
function controlSignal (control) {

var myBox = control.inspector.box;
myBox.element.image = myBox.link.src;
myBox.refresh();

}

Menus

There are three tags available to create menus. The <jsxmenu> tag defines a single menu. Its
title is inserted into the menu bar right before the Window menu. Inside the <jsxmenu> tag,
various <jsxitem> tags define the menu items inside the menu.

When a menu item defined with these tags is about to be displayed, GoLive passes the item to
the menuSetup method. Your implementation of this method can enable or disable the item and
set or clear its check mark. When the menu item is selected, GoLive passes the item to the
menuSignal method as its first argument.

The following example defines two menus. The first menu is appended to the Special menu,
while the second menu is inserted before the Window menu. The first menu item is initialized
dynamically—its checked state changes each time the user chooses it. When a menu item has
been selected, an alert window opens, displaying the menu item text.

<jsxmenubar>
<jsxmenu name="special">

<jsxitem name="one" title="Special One" testsignal>
<jsxitem name="two" title="Special Two">
<jsxitem name="three" title="Special Three">

</jsxmenu>
<jsxmenu name="more" title="More">

<jsxitem name="more1" title="Alert One">
<jsxitem name="separator" title="-">
<jsxitem name="more2" title="Alert Two">

</jsxmenu>
</jsxmenubar>
<script>

function menuSetup (item) {
// simply invert the check mark for "one"
if (item.name == "one")

item.checked = !item.checked;
}
function menuSignal (item) {

if (item.name == "one")
alert ("Selected: " + item.title);>

}
</script>

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 131

A menu is either accessible via its name as a property of the global namespace or as a part of
the global menus array. A menu item is again accessible either as a property of the Menu
object it is defined within or as part of the items array of that Menu object.

jsxmenubar

<jsxmenubar></jsxmenubar>

The <jsxmenubar> tag opens the definitions of menus. It wraps the GoLive menu bar and
should thus appear only once per document. Inside the <jsxmenu> tag, various <jsxitem> tags
define the menu items inside the menu.

The <jsxmenubar> tag has no attributes.

jsxmenu

<jsxmenu name="name" title="Menu text"></jsxmenu>

The <jsxmenu> tag wraps a single menu inside the <jsxmenubar> tag. Each <jsxmenu> tag
stands for exactly one menu, which GoLive inserts into the menu bar right before the Window
menu. A <jsxmenu> tag contains one or more <jsxitem> tags, which define individual menu
items.

The name attribute contains the Javascript name of the menu. There is, however, one special
case which allows you to add menu items to the Special menu of the GoLive application by
giving one of your menus the name "special". If GoLive detects a menu with the name
attribute set to "special", it appends the contents of that menu to the Special menu rather than
defining a new menu in the menu bar.

The title attribute contains the text that is presented to the user.

A menu is either accessible via its name as a property of the global namespace or as a part of
the global menus array.

jsxitem

<jsxitem name="objectName" title="menuItemText" key = "hotKeyChars" dynamic>

The <jsxitem> tag defines a single menu item inside a menu. The name attribute contains the
Javascript name of the menu, and the title attribute contains the text of the menu item. Setting
the title attribute to a single dash "-" causes a separator item to be inserted.

The optional, valueless attribute dynamic indicates that the item needs to be checked and/or
enabled according to the state of the application. When this attribute is present, GoLive calls
the menuSetup method with the first parameter set to the menu item object. Inside that
method, the item may be checked and/or enabled as needed. Menu items without the dynamic
attribute are not called for initialization.

A menu item is accessible either as a property of the Menu object it is defined within or as part
of the items array of that Menu object.

132 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

It is possible to define a hot key for a menu item. The value of the key attribute is a
combination of the identifiers Ctrl, Shift, Alt, Opt, or Cmd as required.

● The Cmd identifier is valid on Mac OS platforms only; on Windows platforms, GoLive
maps the key attribute value of Cmd to the Ctrl key. Similarly, the Ctrl identifier is valid on
Windows platforms only; on Mac OS platforms, GoLive maps the key attribute value of
Ctrl to the Command key.

● The Opt identifier is valid on Mac OS platforms only; on Windows platforms, GoLive
maps the key attribute value of Opt to the Alt key. Similarly, the Alt identifier is valid on
Windows platforms only; on Mac OS platforms, GoLive maps the key attribute value of
Alt to the Option key.

These strings are connected with a plus sign and the hot key character. A valid string would be
"Shift+Ctrl+D", for example. The string itself is displayed in the menu item as is on
Windows; on the Mac, the corresponding hot keys are displayed.

Optionally, the ampersand '&' character may be used within the menu titles to force Windows
to underline the character following the ampersand character. This character can then be used
as hot key. On the Macintosh, these ampersand characters are removed from the string so they
do not display. To display an ampersand, use two consecutive ampersands. When reading the
title property, the ampersand characters are always removed from the original string to
preserve compatibility across operating systems. Suppose you assign the string "&New" to the
title property of a menu item. On Windows, it will display as "New", while the Macintosh
displays "New". The value of the title property is "New".

The menu item hot keys are visible in the Keyboard Shortcuts dialog and may be modified
there. This is fine as long as the definition of menu items inside a module is entirely static. If,
however, the order of the definition of menu items is changed, the Keyboard Shortcuts dialog
loses the connection between the definitions it has stored on disk and the definitions found in
the <jsxitem> tag. As a consequence, the dialog assigns the stored shortcut keys to the wrong
menu items. Usually, this is not a big problem, since a finished module is used “as is” and not
altered in any way. During development, however, this may lead to totally unwanted behavior.
The only way to have the Keyboard Shortcuts dialog behave correctly after changing the order
of menu item definitions is to erase the GoLive Preferences file. If the Keyboard Shortcuts
dialog is not used, nothing happens, because the dialog is never activated.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 133

10 Objects

This chapter describes the JavaScript objects that the SDK supplies. Some of these objects are
created when GoLive interprets a Main.html file, while others, such as the application object,
are always available.

Global Properties and Functions

These properties and methods are part of the global namespace. All dialogs, palettes, boxes,
and menus are part of the global namespace and thus accessible via their name as long as the
name follows Javascript guidelines. If more than one item have the same name, the results are
unpredictable

Global Properties

app Application The application object. Read-only.

module Module The extension that this code belongs to. Read-only

document Document The current document. Read-only

documents Collection The array of documents. This array is read only. It may be indexed
either by integers or by document name as reported by the
document.name property. If the array contains more than one element
of the same name, it cannot be predicted which element is returned.

boxes Collection The array of custom JSX boxes in the current document. This array is
read only. It may either be indexed by integers or by name. If the array
contains more than one element of the same name, it cannot be
predicted which element is returned.

pictures Collection The array of pictures in the current document. This array is read only. It
may either be indexed by integers or by name. If the array contains
more than one element of the same name, it cannot be predicted which
element is returned.

controls Collection The array of controls in the current document. This array is read only. It
may either be indexed by integers or by name. If the array contains
more than one element of the same name, it cannot be predicted which
element is returned.

dialogs Collection The array of dialogs in the current document. This array is read only. It
may either be indexed by integers or by name. If the array contains
more than one element of the same name, it cannot be predicted which
element is returned.

134 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Global Functions

These functions can be called by any object or function in the JavaScript namespace

fileGetDialog

fileGetDialog ([String prompt, String types])

This method presents the file open dialog that is standard for the platform on which GoLive is
running. An optional string may be supplied with a prompt message. The type list differs on
the Mac and the PC. On the Mac, it is a list of file types supplied as four character strings. The
list is separated by commas. A valid type list would f.ex. be the list "TEXT,APPL", which
would limit the display of files to text files and applications. On the PC, the list items are also
separated by commas. Each item contains a list of file search masks, separated by the
semicolon character. Optionally, an explanatory text may be appended with a colon. The string
"*.jpg;*.jpeg:Images,*.html:HTML files" would create two entries in the selection list of
possible file types, one for Images which displays all files ending with .jpg or .jpeg, and the
other entry for all files ending with .html. The return value is a File object if a file was selected.
If the dialog was cancelled, the return value is null.

Returns

File Object

filePutDialog

filePutDialog ([String prompt, String default, String typeList])

This method presents the file save dialog that is standard for the platform on which GoLive is
running The prompt message and the default file name to present to the user are required
arguments. The third argument, which is a list of file types, is optional and is interpreted only
on Windows platforms. This argument has the same structure as the type list which the
fileGetDialog() function expects. The return value is a File object if a file was selected. If the
dialog was cancelled, the return value is null.

Returns

File Object

menus Collection The array of menus in the current document. This array is read only. It
may either be indexed by integers or by name. If the array contains
more than one element of the same name, it cannot be predicted which
element is returned.

prefs Prefs The Preferences object gives extension modules access to their own
preferences. All properties of this object are persistent and have the
same value for every extension module.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 135

alert

alert (String text)

Display an alert box with the given text and an OK button.

Returns

No return value.

confirm

confirm (String text)

Display a confirm box with the given text and Yes and No buttons. Returns true if the Yes
button was clicked.

Returns

Boolean

prompt

prompt (String prompt, String default)

Display a dialog which allows the user to enter a line of text. The edit field is preset with the
given default text. Returns the text the user entered or undefined if the user clicked the Cancel
button.

Returns

String

write

write (String text)

Writes its arguments to the output view of the Javascript Output palette.

Returns

No return value.

writeln

writeln (String text)

Writes its arguments with a Linefeed appended to the output view of the Javascript Output
palette.

Returns

No return value.

136 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

clearOutput

clearOutput()

Erases the contents of the output view of the Javascript Output palette

Returns

No return value.

absoluteURL

absoluteURL (String relURL, String baseURL, String separator)

Convert a relative URL to an absolute URL. Use the supplied base URL for the conversion.
Optionally, a separator character may be supplied; if no separator is specified, the default
separator character is the forward slash (/) character.

Returns

String

relativeURL

relativeURL (String absURL, String baseURL, String separator)

Convert an absolute URL to a relative URL. Use the supplied base URL for the conversion.
Optionally, a separator character may be supplied; if no separator is specified, the default
separator character is the forward slash (/) character.

Returns

String

createPicture

createPicture (String fileName)

Create a picture to be used during a drawing operation. Use the given file to load the picture
from.

Returns

Picture

disposePicture

disposePicture (Picture pic)

Delete a picture created with createPicture(). The Picture object will be useless after calling
this method.

Returns

No return value.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 137

startTimer

startTimer (String scriptlet, Number timeout[, Boolean repeat])

Schedule a scriptlet for delayed execution. The given scriptlet will be run when the timeout
elapsed. If the optional repeat parameter is true, the scriptlet is run repeatedly. The return
value is a number which can be used as parameter for stopTimer() to stop a scheduled scriptlet.

Returns

Number

stopTimer

stopTimer (Number id)

Stop a scheduled scriptlet. The parameter is the return value of the startTimer() call used to
schedule the scriptlet.

Returns

No return value.

startAction

startAction()

The startAction() function opens an undo action. All changes made to a custom box are
recorded into this undo action.

Returns

No return value.

submitAction

submitAction()

The submitAction() function closes all recording and makes the undo action available to the
undo/redo mechanism. This makes it possible to bundle several actions into one undo action.

Returns

No return value.

setActionName

setActionName()

The setActionName() function sets the text that the Undo/Redo menu item displays.

Returns

No return value.

138 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GlobalPrefs Object

This object is available in the app.prefs property. It provides limited read-only access to
GoLive's global preferences.

Prefs Object

Extension modules can create their own preferences which are maintained for all extension
modules and are persistent across multiple runs of GoLive. This feature enables all extensions
to share a common set of preferences. The preferences are accessed via the global object prefs.
The properties of this object are all stored as preferences, so creating a new preference value is
as easy as writing to a prefs property. If, for example, one module executed the code

prefs.present = "I am present";

All other modules can check for the presence of this module with the code

if (prefs.present == "I am present") ...

Application Object

The application object provides access to application global data and methods, like opening
and closing documents.

Application Object Properties

The following properties of the Application object provide access to

● information about the application itself

● current user preferences

● file objects representing folders that the Application object uses

imageFolder String General: The Picture Import folder

absoluteURLs Boolean General: The Make new links absolute check box.

writeGenerator Boolean General: The Write "Generator Adobe GoLive" checkbox.

scriptLibName String Script Library: The name of the Script Library.

scriptLibFolder String Script Library: The name of the Script Library folder.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 139

isModal Boolean Check whether the application currently is displaying a
modal dialog. The property is true if this is the case. Read-
only.

version String The version of GoLive. Read-only.

osVersion String The version of the operating system. Read-only.

scanBrackets Boolean This property controls whether the GoLive scanner
recognizes bracketed tags like [hello]. It reflects the setting
inside the Web database. The value of this property is not
persistent unless the Web database is saved manually.

symmetricTokens String This property is a string containing all delimiters which the
GoLive scanner uses together with the < character to
recognize symmetric tags. By default, the string is set to ?%,
which means that <%tags%> and <?tags?> are
recognized. It reflects the setting inside the Web database.
The value of this property is not persistent unless the Web
database is saved manually.

asymmetricTokens String This property is a string containing all delimiters which the
GoLive scanner uses together with the < character to
recognize asymmetric tags. By default, the string is set to
„!@“, which means that SGML <!tags> and <@tags> are
recognized. It reflects the setting inside the Web database.
The value of this property is not persistent unless the Web
database is saved manually.

folder File A File object referring to the folder that holds the GoLive
application. Read-only.

currentFolder File Returns a File object referring to the current folder. May be
assigned a path name or a File object describing a folder.

settingsFolder File A File object referring to the folder that holds GoLive
extension modules and other settings. Read-only.

systemFolder File A File object referring to the folder that holds the operating
system. Usually, this is the C:\WINDOWS or C:\WINNT
folder on Windows platforms; on Mac OS platforms, this
folder can have any name and it can reside on any local disk.

tempFolder File A File object referring to the folder GoLive uses to store
temporary files. Read-only.

trashFolder File A File object referring to the system Trash folder. On
Windows platforms, this object refers to the local
\RECYCLED directory. On Mac OS platforms, this object
refers to the startupDisk:Trash folder. Read-only.

prefs GlobalPrefs This object provides limited read-only access to GoLive's
preferences.

140 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Application Object Functions

Functions of the application object provide a programmatic means of performing certain
application-level tasks, such as passing keycodes and action codes to GoLive; creating new
documents or opening existing ones; opening a URL in the current browser; accessing user
preferences and configuration information; or quitting GoLive.

postKey(key) Post a keycode to GoLive’s input queue. The parameter is either the
ASCII value of the key or a string whose first character is the
character to post.

launchURL
(String url)

Boolean Launch the given URL in the current browser. If there is no current
browser defined, this method does nothing and returns false.

quit() Terminate the application by posting a quit message to the operating
system. Same as the menu item File/Quit.

openMarkup (String
docName)

Document Open a document to access its markup tree without displaying a
visual representation of the document on the screen. If this method
opens the specified document successfully, its return value is the
corresponding document object which has been appended to the
documents array. On errors, the return value is null. The document
remains invisible; only the markup tree is provided.

openDocument
(String docName)

Document Open a document. If no document name is given, the user is
prompted for a file to open. If the document was opened, the return
value is the corresponding document object which has been
appended to the documents array. On errors, the return value is
null.

newDocument() Document Open a new, empty document. If the document was opened, the
return value is the corresponding document object which has been
appended to the documents array. On errors, the return value is
null. Same as the menu item File/New.

openPrefs() Open the Preferences panel. Same as the menu item
Edit/Preferences.

isModulePresent
(String name)

Boolean Check whether the module with the given name is enabled. Returns
true if so, false otherwise.

startProgress
(String title, [String
message, Boolean
doBusy, Number
seconds])

Displays the progress or busy bar according to the setting of the
doBusy parameter. The seconds parameter takes (optionally) a
number of seconds before the window becomes visible. All
parameters except for the first one are optional; by default, a
progress bar is displayed.

setProgress
(Number value,
[String message])

Boolean Update the progress bar. value is a value between 0 and 1. The
optional message is displayed if supplied. On a busy bar, you can set
the message; the progress value is ignored. The return value is false
if the user clicked the stop button. This method should be called
regularly during processing.

stopProgress() Ends the display of the progress bar.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 141

Document Object

The Document object corresponds to a GoLive document with its associated markup element
tree.

Document Object Properties

The properties of the document object provide information about the current document,its
elements, and the site that incorporates the page the document object represents.

type String The document type. This is currently one of the strings markup for
documents containing an markup tree, site for site documents or
unknown for all other documents. Read-only.

title String The document title. Read-only.

file File A File object representing the disk image of the document. If the
document has not yet been saved before, this property is null. Use
this object with great care, because GoLive may get confused if you
f.ex. delete or rename an open document before saving it.

site SiteReference The root reference of a site document. This is usually a folder
reference. The property is null for non-site documents. Read-only.

homePage SiteReference The home page reference of a site document. This is usually a file
reference. The property is null for non-site documents. Read-only.

ref SiteReference Returns the Site Reference object associated with this document.
This object is always present, regardless of whether the
corresponding Site document is opened or not.

element Markup The markup tree of this document. If there is no tree (the document
might be a simple text document, f.ex), the value is null.
Read-only.

selection Selection The current user selection. This may either be a selected range or the
current cursor position. Defined for markup documents only, null
otherwise. Read-only.

encoding String The character encoding used for the document. It may be any
encoding string usable in the META tag, like "iso-8859-1" or
"shift_jis". Read-only.

history History The Undo/Redo history object allows you to inspect the currently
defined number of Undo/Redo actions. Additionally, the current
action may be selected, causing all necessary undo/ redo actions to
be executed.

142 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Document Object Functions

The functions of the document object enable you to create an undo object for the document it
represents, as well as to save, close, reparse or reformat that document.

IMPORTANT: Do not call this method from within the parseBox or undoSignal methods.

IMPORTANT: Do not call this method from within the parseBox or undoSignal methods.

save() Save the document. If the document was not saved before, a dialog
opens where the user can enter a file name.

saveAs
(String fileName)

Save the document into a different file.

close() Close the document. If the document was not saved, the user is
prompted whether he wants to save the document. If the document
was saved successfully, the document object is invalid afterwards.

reparse() After manipulating the textual representation of a markup element,
call this method to cause a complete reparsing of the document so
the changes to the markup tree are reflected in the document layout
view. All Javascript objects referring to the contents of the
document, like boxes and markup elements, become invalid.For Site
documents, this method reparses all pages in the site.

reformat() This method works like the reparse() method. Additionally, it
formats the document for better printed readability. For Site
documents, this method operates on every page in the site.

createUndo (text) Undo Creates an Undo object. The associated text is displayed in the
History palette and in the Undo menu item.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 143

Module Object

The Module object provides access to the extension module from JavaScript.

Module Object Properties

Properties of the module object provide the JavaScript name of the extension module and
enable debugging services.

Module Object Functions

The module object defines only one function of its own, the localize function.

name String The name of the module. Read-only. This is either the value of the
name attribute defined in the <jsxmodule> tag or the name of the
folder where the main.html file is inside.

debug Boolean The value of the debug attribute of the <jsxmodule> tag. True if
debugging is enabled, false otherwise.

locale String Returns the language in which GoLive runs. This value is a country
code according to ISO-3166-1 as widely used in the Internet for
top-level country domains, like DE for Germany or FR for France.
For all flavors of English, US is used. The value is upper-case.
Setting the value affects the way the localize() method works; its
does not affect any menus or dialogs.

localize
(String mes-
sage)

String This method attempts to translate the given string. It is assumed that
the string is supplied in the English language. First, any table
defined within the jsxlocale tag is scanned for the string. If found
and a translated string is present which fits the current language
setting, this string is returns. If the attemps fails, it tries to find the
string within the GoLive translation database. If found, the
translated string is returned. In this case, the setting of the locale
property is ignored. If the string cannot be translated, the parameter
itself is returned. Setting the locale property to "NONE" disables
this method.

144 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Link Object

A link is an active URL which may be used to feed an URLGetter control in an inspector.

Link Object Properties

Link Object Functions

url String The URL that this link points to. It may be set as well as read. For
dialogs and inspectors, this object is part of an URLGetter control.

local Boolean This property is true if the link points to a file residing on a local
disk; it is false otherwise. Read-only.

mimeType String The MIME type of the link. Read-only.

protocol String The upload/download protocol of the link. Read-only.

drawIcon
(Number x, Number y,
[Number width,
Number height])

Every link has an associated icon which reflects its current state.
Use this method to draw this icon at a certain location. The icon
may optionally be stretched to a given size.

linkChanged (link) When the user changes a link, either in an URLGetter control or
maybe in the Site View, GoLive calls this method with the affected
link as parameter.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 145

Box Object

GoLive creates a box object whenever the user drags a custom element’s icon from the Objects
palette to a GoLive document window, or when GoLive reads a document that contains a
custom tag.

The box object is the visual representation of a custom markup element defined by the
<jsxelement> and <jsxpaletteitem> tags. Each of these tags has a classid attribute that
GoLive uses to identify the elements of the custom box. When these tags are used to define a
custom box, each must specify the same classid attribute value. This value identifies the
palette entry that creates the custom box and inserts HTML in the document, as well as the
inspector window to display when the box is activated.

“Box Object Functions” on page 146 describes the three callback functions that implement the
functionality of the box.

Box Object Properties

name String The name of the box as defined by the name attribute of the
<jsxelement> tag this box represents. Used to index the box in
the boxes array. Read-only.

classid String The class name of the box as defined with the classid attribute.
Read-only.

inspector JSXDialog A reference to the inspector dialog. This property is set only when
the box is selected and an inspector dialog is active for that box and
null otherwise. Read-only.

leftMargin Number The left margin of the box. Used for Container boxes only.

rightMargin Number The right margin of the box. Used for Container boxes only.

topMargin Number The top margin of the box. Used for Container boxes only.

bottomMargin Number The bottom margin of the box. Used for Container boxes only.

width Number The width of the box.

height Number The height of the box.

x Number The X position of the box relative to the top left corner of the
document. Since this position is determined by the document
layout, this property is read-only.

y Number The Y position of the box relative to the top left corner of the
document. Since this position is determined by the document
layout, this property is read-only.

element Markup The markup element associated with this box. Read-only.

146 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Box Object Functions

NOTE: Your implementation of the parseBox method must not call the
Markup.setInnerHTML(), Markup.setOuterHTML(), Document.reparse(), or
Document.reformat() methods. Attempting to call these methods returns a runtime
error.

IMPORTANT: Your drawBox function must not call any functions other than drawing
functions. An attempt to reparse the document or to download a file from
within the drawBox method may cause GoLive to terminate abnormally.

refresh() Request a repaint of the box.

createLink
(String url)

Link Create a new link and attach it to the box. If the URL is not
supplied, an invalid link is created which may be set to an URL
later.

removeLink
(Link link)

Remove a link from the box. The link object becomes invalid after
this call.

parseBox (box,
reason)

GoLive calls this function when it reads the tag associated with this
box object, either because the document containing the tag is being
opened or because the user has switched back to a Layout view of
this document from some other view. Your implementation of this
function should read the contents of the tag and set up the box
accordingly. When GoLive calls this function, it passes one of the
following reason values:

1 the HTML document is being read.
2 the box has been dropped from the Objects palette or pasted
from the clipboard.
3 the box is dragged around.

drawBox
(box, draw)

Global callback function called by GoLive to draw a custom box.
The box to be drawn is supplied together with a Draw object which
is used for the drawing operations.

boxResized
(box,wdth,hght)

Global callback function called by GoLive when a custom box has
been resized. Should update the markup tag and/or recalculate the
box.

inspectBox (box) Global callback function called by GoLive when the inspector
dialog for this box is about to be displayed. Should fill in the
contents of the dialog to display the state of the box.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 147

Collection Object

A collection is an array. Its members are indexed by name. In some collections, the members
may be indexed by number as with a regular array.

Collection Object Properties

Collection Functions

The Collection object defines no functions of its own.

Picture Object

A picture is a graphics image, like a GIF or JPEG file, created by a tag. It is used for
display purposes.

Picture Object Properties

Picture Object Functions

length Number The number of elements of the collection. This value is zero if the
members cannot be indexed by number.

[index] Object The index operator retrieves the members of this collection. The
members may be indexed by name; some collections may be
indexed by numbers as well.

name String The name of the picture as seen in the tag. Read-only.

width Number The width of the picture. Changing the size causes the picture to be
stretched accordingly when drawn.

height Number The height of the picture. Changing the size causes the picture to be
stretched accordingly when drawn.

draw (Number x,
Number y)

Draw the picture at the given location. This location is relative to
the top left corner of its surrounding box or window.

148 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Control Object

The Control object wraps a control created within a dialog with the <jsxcontrol> tag. Since
this object may contain several different types of controls, a number of methods and properties
exist which only deal with certain types of controls. These properties and methods return
default values for controls they cannot handle. Setting values or calling methods is silently
ignored for bad control types.

Control Object Properties

type String The type of the control as seen in the <jsxcontrol> tag in the
document. Read-only.

name String The name of the control as seen in the <jsxcontrol> tag in the
document. Read-only.

width Number The width of the control.

height Number The height of the control.

value variable The value of the control. This value depends on the type of the
control. It may be a color value, the index of a selection, or the text
of an edit field. For buttons and static text fields, this is the text
which is displayed.

values String The contents of a list box or a popup menu as a string of comma-
separated values. Setting this value with a comma-separated list like
"One,Two,Three" reloads the entire contents of the control. For
other controls, this property has the same effect as the value
property.

enabled Boolean Get or set the enabled state of the control.

state Boolean Retrieve or set the selected state of the control. Setting this property
causes the control to receive the input focus if possible.

selection Number Get or set the index of the currently selected item in a popup menu
or list box. If the list box is multi-selectable, the property returns an
Array object containing the index of all selected entries. When
setting the property, a multi-selectable listbox turns on the selection
for the given entry without deselecting the other entries. use the
value -1 to deselect all entries for popups and list boxes. This
property is only valid for popup menu controls and list boxes; all
other controls return -1.

color String Get or set the color value for a color field control. Any valid HTML
color may be used, like "red", or "#FF0000". This property is valid
for color fields only; all other controls return an empty string as
color value.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 149

Control Object Functions

IMPORTANT: Your drawBox function must not call any functions other than drawing
functions. An attempt to reparse the document or to download a file from
within the drawBox method may cause GoLive to terminate abnormally.

itemCount Number Retrieve the number of items for a popup menu. This property is
valid for popup menus only. All other controls return 0. Read-only.

multi Boolean This property is valid for list boxes only. It contains a boolean
indicating whether the user can select multiple entries or not.
Setting this property to true allows for the selection of multiple list
box entries. The selection property returns an Array object when
multi-selection is turned on.

group Number This property is valid for radio buttons only. GoLive treats all radio
buttons having the same group value as a group for the purposes of
selection behavior; when one of the buttons in the group is selected,
GoLive deselects the others in the group automatically.

addItem
(String text)

Add an item to a menu. All other controls ignore this method. If the
value of the text parameter is a single dash, this method adds a
separator item to the menu.

removeItem
(String text)

Remove an item from the menu control. This method is ignored for
all other controls.

removeAll() Remove all items from the menu control. This method is ignored for
all other controls.

setLink
(Link link)

Set the link for an URLGetter control. This method is ignored for all
other controls.

refresh() Initiate a repaint of the control. Useful for custom controls.

beginDraw() Draw Call this method to get a Draw object if you want to do direct
drawing as a response to state changes. The beginDraw() call must
be matched by a call to endDraw() to terminate the drawing. Calls
to beginDraw() cannot be nested.

endDraw() Matches the beginDraw() method. It ends any drawing operation
and invalidates the Draw object returned by beginDraw().

controlSignal (ctl) Global callback function called by GoLive when the state of a
control has changed due to user interaction.

drawControl
(ctl, draw)

Global callback function called by GoLive when a custom control
should be redrawn. The affected control is supplied along with a
Draw object which is used for all drawing.

150 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Dialog Object

The Dialog class wraps a dialog definition made with the <jsxdialog>, <jsxpalette>, or
<jsxinspector> tag. It is part of the dialogs array in the global space, as is the dialog name.

Dialog Object Properties

Dialog Object Functions

mouseControl
(ctl,x,y,mode)

Global callback function called by GoLive when mouse is over the
control and the button has been pressed (mode==0), the mouse has
been moved with the button pressed (mode==1), or the mouse
button has been released (mode==2).

name String The name of the dialog as seen in the <jsxdialog> tag in the
document. Read-only.

title String The window title of the dialog. Applies only to modal dialogs.

focus Control Returns the Control object which currently has the input focus.
Assigning a Control object to the property switches the input focus
over to the given control.

box Box This property contains a reference to a box being inspected while an
inspector dialog is active. It is null for all other dialogs and
palettes, or when the inspector dialog is inactive. Read-only.

controls Collection The array of controls in this dialog. This array is read only. It may
either be indexed by integers or by name. If the array contains more
than one element of the same name, it cannot be predicted which
element is returned.

runModal() Number Run this dialog as a modal dialog. The return value is set by
pressing a button with a predefined name (See also the <jsxcontrol>
tag) or by calling the exitModal() function. If you have specified a
timeout for scripts, it is disabled while the dialog is visible. For
more information, see “Setting the JavaScript Timeout” on page 33.

exitModal
(Number n)

Dismisses this dialog and causes runModal() to return the argument
n.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 151

Draw Object

The draw class is the wrapper for basic drawing. It works with an internal cursor which is used
to draw lines and text. The coordinates are always relative to its surrounding box or window.
This class is either supplied as a parameter to the drawBox()/drawControl() methods or
returned by the beginDraw() method of the Control object.

Draw Object Properties

The Draw object provides no properties of its own.

Draw Object Functions

moveTo (Number x,
Number y)

Move the graphics cursor to a certain location.

lineTo (Number x,
Number y)

Draw a line from the current graphics location to the given position
and move the graphics cursor to the new location.

setColor
(String color)

Set the drawing color. Any valid HTML color string may be used,
like "red" or "#FF0000". Alternatively, three color for red, green,
and blue may be supplied, where each color value ranges from 0 to
255.

frameRect
(Number x, Number y,
Number width,
Number height)

Draw an outlined rectangle.

fillRect
(Number x, Number y,
Number width,
Number height)

Draw a filled rectangle.

frameOval
(Number x, Number y,
Number width,
Number height)

Draw an outlined oval.

fillOval
(Number x, Number y,
Number width,
Number height)

Draw a filled oval.

invertRect
(Number x, Number y,
Number width,
Number height)

Inverts the colors of the given rectangle, producing an XOR effect.
Calling this method twice undoes the effect of the first call.

152 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Markup Object

The Markup class wraps a markup tag, a text block, or a comment. Its properties provide the
tag name and the element type. The element contains the attribute array, and the array of
subelements. This array may be searched for specific tags. The root element has no parent. The
markup object has the ability to overwrite its textual representation.

The attributes of an element are implemented as properties. Setting a property causes the
corresponding attribute to be written to the HTML code. Reading a property returns the
property value or undefined if the attribute does not exist. Deleting a property deletes the
attribute from the code.

penSize
(Number width)

Set the width of the drawing pen.

textFont
(String fontName)

Set the name of the font to use for text output. Use
"ApplicationFont" to set the font to the application font.

textSize
(Number size)

Set the size in points for the font to use for text output.

textFace
(Number bits)

Set the attribute bits for the font to use for text output. These are bit
values which may be added together:

1 – bold
2 – italics
4 – underlined
8 - outlined (Macintosh only)
16 - shadowed (Macintosh only)
32 - condensed (Macintosh only)
64 - extended (Macintosh only)

drawString
(String text)

Draw a string at the current graphics cursor location.

stringWidth
(String text)

Calculate the width of a string in pixels by using the current font
settings.

stringHeight
(String text)

Calculate the height of a string in pixels by using the current font
settings.

getDrawInfo() Number Retrieve a magic number which may be passed on to a native
language extension if custom drawing is implemented there. May
be casted to a JSADrawInfo structure.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 153

Markup Object Properties

Markup Object Functions

tagName String The tag name of this element.

tagStart String The starting sequence of this tag. This may f.ex. be "<", "[",
"percent", or "<%".

symmetric Boolean This member is true if the end of the tag matches the beginning of
the tag, like in "<%xxx%>".

elementType String Retrieve the type of the element. It may be one of the strings "tag",
"text", "comment", or "bad".

parent Markup Retrieve the parent element of this element. The root element
returns null. Read-only.

subElements Collection The array of sub elements. This array is read only. Its elements can
be accessed by means of an integer index or the tagName property .
If the array contains more than one element of the same name, it
cannot be predicted which element is returned.

getSubElementCount
(String tagName)

Number Count all sub elements for a specific tag and return the number of
elements found. If the tag name is omitted, the total number of all
subelements is returned.

getSubElement
(String tagName,
[Number index])

Markup Get the nth sub element of a specific tag. The second argument is
optional and defaults to 0. The first argument may be omitted to
index all elemenets sequentially.

getOuterHTML() String Retrieve the HTML representation of the element, including the
element tag itself.

getInnerHTML() String Retrieve the HTML representation of the element, excluding the
element tag itself.

setOuterHTML
(String text)

Replace the HTML representation of the element, including the
element tag itself. Cannot be called inside parseBox().

setInnerHTML
(String text)

Replace the HTML representation of the element, excluding the
surrounding tag characters.On binary tags (tags with a matching
end tag), the contents of the tag are replaced. Cannot be called
inside parseBox()..

split ([String sep]) Array Split the contents of the inner HTML into an array of strings. Use
the given character as a separator; if none given, use spaces as
separators. Do not split quoted strings containing the separator
character. Useful for checking the contents of special tags.

154 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Menu Object

A menu is defined with a <jsxmenu> tag containing one or more <jsxitem> tags, one for each
item. When a menu is about to be displayed and the dynamic attribute is present, the Javascript
method menuSetup (item) is called for each menu item. The method may set the enabled and
checked state for each item. When the user selects a menu item or types its keyboard shortcut,
GoLive calls the menuSignal method, passing the selected menu item as its argument.

Menu Object Properties

Menu Object Functions

name String The JavaScript name of the menu object, as specified by the name
attribute of the <jsxmenu> tag that defines the menu. Read-only.

title String The title of the menu as displayed to the user. Use the ampersand '&'
character to cause Windows to underline the character following the
ampersand character and to accept that character as a hot key. On
the Macintosh, ampersand characters are ignored and removed from
the string. Use double ampersands to display an ampersand
character. The property value is the title string with the ampersand
characters removed.

selection Number Get or set the currently selected menu item.

items Collection The array of menu items. This array is read only. It may either be
indexed by integers or by name. If the array contains more than one
element of the same name, it cannot be predicted which element is
returned when addressed by name.

addItem
(String name,
String title,
Number before)

Append a new menu item. An optional third parameter allows the
item to be inserted before a specific other item.

removeItem
(String name)

Remove a menu item.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 155

MenuItem Object

The menu item corresponds to a <jsxitem> tag. It is always part of a Menu instance. When a
menu is about to be displayed, the Javascript method menuSetup (item) is called for each
menu item. The method may set the enabled and checked state for each item which has been
flagged with the dynamic attribute. When the user selects a menu item or types its keyboard
shortcut, GoLive calls the menuSignal method, passing as its argument the jsxmenuitem
object that represents the selected menu item.

MenuItem Object Properties

MenuItem Object Functions

name String The JavaScript name of the menu item object, as specified by the
name attribute of the <jsxmenuitem> tag that defines the menu
item. Read-only.

menu Menu The menu where this item belongs to. Read-only.

title String The menu item text this object displays in a menu. If the value of
this property is a single dash, the menu item is a separator. Use the
ampersand '&' character to cause Windows to underline the
character following the ampersand character and to accept that
character as a hot key. On the Macintosh, ampersand characters are
ignored and removed from the string. Use double ampersands to
display an ampersand character. The property value is the title string
with the ampersand characters removed.

checked Boolean Access the check mark left of the menu item.

enabled Boolean Get or set the enabled state of the item.

dynamic Boolean Get or set the need to change the state of this item before it is
displayed.

menuSetup
(item)

Global callback function called by GoLive when a menu item with
the dynamic attribute is about to be displayed.

menuSignal
(item)

Global callback function called by GoLive when a menu item has
been selected.

156 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Selection Object

The selection object is part of the document object. Most of its properties are read only, except
for the element property. Assigning a markup element to this property causes the element to be
selected if possible. Assigining Null or anything else than a markup element causes the current
selection to be removed.

Selection Object Properties

Selection Object Functions

The selection object defines no functions of its own.

type String The type of the selection:

point No selection. The selection reflects the cursor position.

part A part of the current markup element has been selected.
This is true for simple text elements.

full The whole markup element has been selected. This is f.ex.
true when the user clicks an image box.

complex The selection covers more than one markup element, or
expands partially into other tags.

outside The selection is outside of the current markup element.
This is extremely unlikely to happen.

element Markup The first selected element. Assigning a Markup object to this
property causes the corresponding element to be selected if
possible. Assigning anything other than a Markup object causes
the selection to be removed.

start Number The beginning offset of the selection, as relative to the outer
HTML of the element. Read only.

length Number The length of the selection. Read only.

text String The selected text, according to the settings of start and length.
Read only.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 157

Undo Object

The createUndo method of the Document Object creates an undo object associated with a
specific user operation on a specific custom box. You must store in this object any properties
your custom box needs to perform the operation, undo its effects, or redo its effects. Once all
of these properties have been added to the undo object, you pass it back to GoLive by calling
the undo object’s submit method.

Whenever the user issues the command to perform the action, undo the action, or redo the
action, GoLive passes the undo object to your extension’s undoSignal method along with a
code indicating whether your method should do, undo, or redo the operation the undo object
encapsulates. Your implementation of this method utilizes the previously-stored properties to
take appropriate action.

For a code example, see “Supporting the Undo and Redo Commands” on page 95.

Global Undo Functions

In addition to the functions that the Undo object provides, you can use the following global
functions to support undo/redo functionality:

● The startAction() function opens an undo action. All changes made to a custom box are
recorded into this undo action.

● The submitAction() function closes all recording and makes the undo action available to
the undo/redo mechanism. This makes it possible to bundle several actions into one undo
action.

● The setActionName() function sets the text that the Undo/Redo menu item displays.

Undo Object Properties

The undo object has no properties of its own. You must add to it any properties your extension
requires to perform an operation or reverse its effects. You can add properties to the Undo
object simply by declaring and assigning them, as the following example does:

// create empty Undo object
var undo = document.createUndo (“operationName”)
// add properties
undo.myProperty = myValue;
undo.myOtherProerty = myOtherValue;
undo.myThirdProp = yetAnotherValue;
// submit the undo object to GoLive
undo.submit();

Once you’ve finished adding properties to the undo object, return it to GoLive by calling the
undo object’s submit method.

yourPropertyName String Add as strings any properties you need to do, undo, or redo this action.

158 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Undo Object Functions

History Object

The History object is part of the Document object. It provides access to the Undo/Redo history.

History Object Properties

History Object Functions

The History object defines no functions of its own.

submit() The undo object is submitted to GoLive. GoLive in turn stores the
object into its History list and calls the callback function
described below.

undoSignal
(undo, action)

Callback function for Undo objects. GoLive calls this function for
three purposes, which are reflected in the action parameter:

0 – Do. Called as soon as submit() is called.
1 – Undo.
2 – Redo.

The methods Document.reparse() as well as Document.reformat()
cannot be called within this function. An attempt to call these
methods results in a runtime error.

length Number The number of history entries. Readonly.

current Number The current index of the history. This is a number between 0 and
the length property. Setting this value causes the history to set the
current element to the given index, performing all necessary
undo/redo actions.

maxCount Number This property reflects the maximum count of undo/redo actions.
This is a value between 1 and 999. As opposed to setting the value
in the History palette, setting the value here does not make the
change permanent; it is only valid for the current program run.

[index] String Indexing the History objects returns the name of an Undo action.
Readonly.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 159

SiteReference Object

The SiteReference object is part of a site or markup document. Each reference stands for either
a file, a folder, or other types of links contained in a file like email addresses. The root of the
site can be found in the property document.site, while the home page is in
document.homePage. The property document.ref returns a Site reference object for the current
document, which may be used to traverse outgoing and incoming links even if the document is
not part of a site document.

SiteReference Object Properties

All SiteReference properties are read-only.

name String The name, usually the file name or its URL.

type String The type of the reference. One of the following strings:

html a HTML file
folder a folder containing files
alias a file or folder alias
image an image file
mail an email address
invalid an invalid reference

siteDoc Document The Site document which this reference belongs to. This property
is null if the Site document is not opened.

url String The URL of the reference as used in the document.

longUrl String The full URL of the reference.

anchors Array The array of anchors contained in this file. This array is empty if
there aren’t any anchors on the page.

local Boolean True if the reference is a file on local storage, false otherwise.

(name) String Add by name any properties you may need for your Undo. The
properties are stored as strings.

status String The status of the reference, one of the following:

error parsing error or other error
empty an empty reference
checking the reference is currently being checked
invalid an invalid reference
ok the reference is good and validated

160 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

SiteReference Object Functions

lockStatus Number The locking status of the reference:
0 unknown
1 read only
2 read/write
3 checked in
4 checked out exclusively
5 checked out non-exclusively
6 broken

fileSize Number The physical size of a file, 0 for other types.

mimeType String The MIME type of the reference.

protocol String The upload/download protocol of the file.

title String The document title as defined in the <title> tag of the HTML
document. Empty for other types.

prefs Prefs A preferences object. Here, you can get or set any preference data
you might be interested in. The data is stored together with the
reference and may be used for marking the reference or setting
other attributes.

getFiles
(String type)

SiteCollection Retrieve the files contained in a folder reference. The optional
type argument may be a string containing a list of values as
returned by the type property, separated by any non-alpha
character, except for the mail value. For example, html+folder
would be a valid string. The call works only when the Site
document is open.

getIncoming
(String type)

SiteCollection Retrieve the list of SiteReference objects that point to this
SiteReference object. The optional type argument may be a
string containing a list of values as returned by the type property,
separated by any non-alpha character, except for the folder value.
For example, html+image would be a valid string. The call
works even if no Site document is open; it works, however, only
for opened documents, so it would return a reference only if
another open document referenced this reference.

getOutgoing
(String type)

SiteCollection Retrieve the list of SiteReference objects this
SiteReference object references. The optional type argument
may be a string containing a list of values as returned by the type
property, separated by any non-alpha character, except for the
folder value. For example, html+image would be a valid
string.The call works even if the Site document is not open.

show() Displays and highlights the reference in the Site window.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 161

SiteCollection Object

The SiteCollection object is part of a site document. It contains a number of
SiteReference objects. Despite their similar names, the SiteCollection object is not
related to the Collection object, nor is it used similarly.

Site Collection Object Properties

The SiteCollection object defines no properties of its own.

Site Collection Object Functions

open() Document Opens the reference in GoLive as a HTML document. Valid for
HTML documents only. The returned Document object becomes
the current document.

first() SiteReference Returns the first element of the collection. If the collection is
empty, the result is null.

last() SiteReference Returns the last element of the collection. If the collection is
empty, the result is null.

next() SiteReference Returns the next element of the collection. If there is no next
element in the collection, the result is null.

prev() SiteReference Returns the previous element of the collection. If there is no
previous element in the collection, the result is null.

[index] SiteReference If the name of a reference is known, it may be used to access that
element directly within a collection.

162 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

File Object

The File object wraps operating system files and folders. To create a File object, call the
JSXFile constructor function. When initialized with a partial file name, the File object always
converts this partial file name to a full path name in order to create an unique reference to a
certain file. File objects that refer to the same file are distinct objects; for example, the file
object returned by the property document.file is different from the File object
document.homePage.file even if both refer to the same disk file

File Object Properties

name String Returns the file name without the path. Readonly.

path String Returns the full path name of the file. Readonly.

url String Returns the full path name of the file encoded as URL. Readonly.

parent File The parent object of this file object. If the file is a top level object,
the value is null.

exists Boolean Returns true if the file or folder exists on disk. Readonly.

isFolder Boolean Returns true if the file object is an existing folder. Readonly.

macType String Returns the file type of the file on a Macintosh as a four-character
string. If the file type cannot be determined or on Windows, the
return value is "????". Readonly.

macCreator String Returns the creator ID of the file on a Macintosh as a four-
character string. If the file creator cannot be determined or on
Windows, the return value is "????". Readonly.

size Number Returns the file size. For folder, the return value is 0. Readonly.

eof Boolean Returns true if an EOF condition has been raised during a read
operation. Readonly.

error Boolean Returns true if an error has been detected during a read/write
operation. Readonly.

readOnly Boolean Mirrors the Readonly/Locked flag of the file on disk. May be set
to change the status of that flag.

lastError String Contains an explanatory text describing the last I/O error related
to this file. This property is often used to check the result of a
HTTP upload or download. May be set to any string value or to
the empty string to clear the value.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 163

File Object Functions

JSXFile
(String path)

File The constructor or global function for this object creates a new
file object. The parameter may either be a pathname or a local
URL. If the parameter is omitted, the object is initialized to the
current working directory

createFolder() Boolean Attempt to create a folder at the location the file name points to.
Returns true if the folder could be created.

getFiles
([String mask,
String type])

Array Get a list of files contained in the current folder object. The mask
is the search mask for the file names. It may contain question
marks and asterisks and is preset to * to find all files. The second,
optional parameter is the Macintosh file type supplied as a four-
byte string, like "TEXT". It is ignored on Windows systems. The
return value is an array of File objects which correspond to the
files found. The return value is null if the call is not used on a
folder object.

rename
(String newName)

Boolean Rename the file object to the new name. The new name must not
have a path. Returns true if the file object could be renamed.

move
(String newPath)

Boolean Move the file object to a different location. The parameter is the
name of the new location; it can either be a partial pathname, a
full pathname or a local URL. Returns true if the file was moved
successfully.The File object is changed to point to the new
location of the file.

copy
(String newPath)

Boolean Copy the file object to a different location. The parameter is the
name of the new location; it can either be a partial pathname, a
full pathname or a local URL. Returns true if the file was copied
successfully.The File object remains unchanged.

openMarkup() Document Open a document to access its markup tree without displaying a
visual representation of the document on the screen. If this
method opens the specified document successfully, its return
value is the corresponding document object which has been
appended to the documents array. On errors, the return value is
null. The document remains invisible; only the markup tree is
provided.

openDocument() Document Open a document. If the document was opened, the return value is
the corresponding document object which has been appended to
the documents array. On errors, the return value is null.

164 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

open
(String openMode)

Boolean Open the file for subsequent read/write operations. The supplied
open mode is equivalent to the open mode of the C library call
fopen():

rOpens for reading. If the file does not exist or cannot be found,
the call fails.

wOpens an empty file for writing. If the file exists, its contents are
destroyed.

aOpens for writing at the end of the file (appending); creates the
file if it does not exist.

r+Opens for both reading and writing. (The file must exist.)

w+Opens an empty file for both reading and writing. If the given
file exists, its contents are destroyed.

a+Opens for reading and appending; creates the file if it does not
exist. When a file is opened with the "a" or "a+" modes, all write
operations are at the end of the file. The file pointer can be
repositioned, but is always moved back to the end of the file
before any write operation is carried out. Thus, existing data
cannot be overwritten.

tOpen in text (translated) mode. In this mode, CTRL+Z is
interpreted as an end-of-file character on input. In files opened for
reading/writing with "a+", OPEN checks for a CTRL+Z at the end
of the file and removes it, if possible. Also, the system attempts to
recognize CRLF sequences and converts them to Line Feed
characters. This is the default mode.

bOpen in binary (untranslated) mode; translations involving
carriage-return and linefeed characters are suppressed. May be
supplied along with one of the other opening modes.

read
(Number count)

String Reads the contents of the file from the current position on. In
translated mode, CRLF sequences are translated to Line Feeds.
Returns a string which contains up to the number of characters
which were supposed to be read.

readln() String Reads one line of text. In binary mode, line feeds are recognized
as CR, LF or CRLF pairs.

write
(String text, …)

Boolean Write the given string to the file. The parameters of this function
are concatenated to a single string. Returns true if the string could
be written successfully.

writeln
(String text, …)

Boolean Write the given string to the file and append a Line Feed
sequence. The parameters of this function are concatenated to a
single string. Returns true if the string could be written
successfully.

seek
(Number pos)

Boolean Seek to a certain position in the file. Returns true if the position
was changed.

tell() Number Returns the current position in the file.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 165

$ Object (Debugger Object)

The $ object, also known as the debugger object, is always present. It provides properties and
methods you can use to debug your JavaScript code.

$ Object Properties

The properties of the $ object provide information about the version of the host platform’s
operating system and the flavor of JavaScript currently in use by GoLive Extend Script.

NOTE: The flavor property applies only to GoLive. It does not apply to Web browsers.

close() Boolean Close the file. If the file has been written to, its contents are
flushed to disk. Returns true if the file could be closed
successfully.

get
(String remoteURL,
[String mimeType])

Boolean Download a file from a remote HTTP server. The URL is the
name of the remote file to download. The file is stored into the
location which the JSXFile object points to. If a file with the
same name already exists, it will be overwritten. The result is
true if the file was transferred successfully, otherwise it is
false. The lastError property contains the HTTP status code
after the transfer.

put
(String remoteURL,
[String mimeType])

Boolean Upload a file to a remote HTTP server. The URL is the name of
the remote location where the file is stored. The HTTP server
must be able to fulfill HTTP PUT requests. The result is true if the
file was transferred successfully, otherwise it is false. The
property lastError contains the HTTP status code after the
transfer.

os String Return the operating system version as a string.

flavor String Sets or returns the language flavor in use by GoLive Extend Script.
Possible values are Javascript for the Netscape flavor, Jscript
for the Microsoft flavor or ECMAScript for the ECMA-262 flavor.
Javascript is the default value of this property.

166 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

$ Object Functions

The functions of the $ object

● set and clear breakpoints

● print messages to the main debugger window

● request garbage collection

print(…) Prints its parameters to the Output window of the debugger UI.
Does not activate the debugger when called.

setbp
(String
scriptlet,
Number line,
[String eval,
Number passes])

Set a breakpoint. The scriptlet parameter is the name of a scriptlet as
defined when the scriptlet was entered into the engine. The line
number is 1-based and counts from the beginning of that scriptlet.
Optionally, a JavaScript string may be supplied which is evaluated
before the breakpoint is being activated. If the string does not
evaluate to a non-zero value or true, the breakpoint is ignored. A
second optional parameter passes can be used to set a number of
times the breakpoint must be passed before it is activated.

The special value nextCall, when used as a single parameter, sets a
breakpoint on the next function call. This breakpoint is cleared
when executed.

clearbp
(String
scriptlet,
Number line)

Clear a breakpoint. The scriptlet parameter is the name of a scriptlet
as defined when the scriptlet was entered into the engine. The line
number is 1-based and counts from the beginning of that scriptlet.
The special value nextCall, when used as a single parameter, clears
a previously set breakpoint on the next function call.

If clearbp() is used without arguments, all breakpoints are cleared.

bp() Execute a breakpoint. This method is equivalent to the Javascript
debugger statement.

gc() Call the built-in garbage collector to free up objects and reduce
memory requirements.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 167

11 Event-Handling Functions

GoLive calls these functions in response to events such as changes in the state of a control, or
parsing the active HTML document. To respond to such events, your extension implements the
JavaScript functions this section describes.

Global Functions

initializeModule

initializeModule()

Called after the module has been loaded. Use it to define global variables etc.

terminateModule

terminateModule()

Called before the module is being unloaded. Use it to do any final action necessary.

Custom Boxes

parseBox

parseBox (box)

When GoLive parses a custom tag, it creates a box object, inserts it into the document view,
and then calls this function, passing the box as its argument. Your implementation of this
function must initialize the box in any way that is appropriate; for example, this function might
set the box’s height and width as specified by the height and width attributes of the custom
HTML element.

IMPORTANT: Do not call Markup.setInnerHTML(), Markup.setOuterHTML() ,
Document.reparse() or Document.reformat() from within this function.
An attempt to call these methods results in a runtime error.

168 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive calls the parseBox method in response to any of the following events:

● The user drops an Objects palette icon onto a GoLive document window.

● GoLive reads a document containing a custom HTML element defined by the jsxelement
and jsxpalettentry elements.

● The user switches to Layout View from another view in the document window.

drawBox

drawBox (box, draw)

Called when a custom box is about to be drawn. Implement it to visualize your custom box.
Use the global draw object to draw lines, rectangles, circles, or text. Use the supplied Draw
object for the drawing operations.

IMPORTANT: Your drawBox function must not call any functions other than drawing
functions. Attempting to reparse the document or to download a file from
within the drawBox method may cause GoLive to terminate abnormally.

boxResized

boxResized (box, width, height)

Called when the size of the box has changed. Implement it to record the changes in the markup
code and/or to recalculate the contents of the box.

inspectBox

inspectBox (box)

Called when the inspector dialog for a custom box is about to be displayed. Use it to fill in the
control of the inspector with the current values for the box.When an inspector is active for a
box, the property Inspector.box of the inspector points to the box being inspected, so you can
use control.parent.box within the controlSignal() function to access the box being inspected.
On the other hand, when a box is being inspected, the property Box.inspector is set to the
inspector dialog so you can use the expression box.inspector.controlName to access the
inspector's controls.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 169

Controls

These functions are called when the state of a control has changed, or when a menu selection
has been made.

controlSignal

controlSignal (control)

Called when the state of a control has changed. Use it to extract the state of the control and to
react on the state change, like setting an URL when the control is an URL getter control.

menuSetup

menuSetup (menuitem)

When a menu item has the dynamic attribute set, this function is called when the menu is
about to be displayed. This allows the setting of a check mark or to disable the menu item
before it is displayed.

menuSignal

menuSignal (menuitem)

When a menu item has been selected, this function is called with the affected menu item.

undoSignal

undoSignal (undo, action)

Callback function for Undo objects. GoLive calls this function for three purposes, which are
reflected in the action parameter:

0 – Do. Called as soon as submit() is called.
1 – Undo.
2 – Redo.

IMPORTANT: Do not call Document.reparse() or Document.reformat() from within this
function. An attempt to call these methods results in a runtime error.

linkChanged

linkChanged (link)

When the user changes a link, either in an URLGetter control or maybe in the Site View,
GoLive calls this method with the affected link as parameter.

170 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Custom Controls

For custom controls, GoLive calls the functions this section describes in addition to calling
those the previous section describes.

drawControl

drawControl (control, draw)

Called for custom controls when they are about to be drawn. Use it to visualize the state of
your control. Pay respect to the mouse state (is the control clicked?) when drawing. Use the
supplied Draw object for the drawing operations.

IMPORTANT: Your drawControl function must not call any functions other than drawing
functions. Attempting to reparse the document or to download a file from
within the drawBox method may cause GoLive to terminate abnormally.

mouseControl

mouseControl (control, x, y, mode)

Called to record mouse clicks on the control. x and y are the position of the mouse pointer
relative to the upper left corner of the control. mode is one of the following values:

0 - the left button has been pressed

1 - the mouse has been moved with the left button down

2 – the mouse button has been released

When this function is not present, controlSignal() gets called instead when the mouse button is
released over a custom control.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 171

12 C and C++ APIs For Use
In External Binary Libraries

This chapter describes C-language macro functions that the JSA.h interface (header) file
provides. The functions in a compiled external library call these functions to

● obtain arguments from the GoLive environment

● pass return values back to GoLive.

For a guide to the use of these functions, see Appendix A, “Using External Libraries.”

172 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

C API Synopsis

This section summarizes use of the C API. For more detail, see “Implementing External
Binary Libraries” on page 187.

// include JSA header for C or C++
#include "JSA.h" // use "JSA++.h" for C++ implementations

// include any other libs your extension requires
#include <math.h>

// include platform-specific drawing support
#ifdef WIN32

#include <windows.h>
#else

#include <QuickDraw.h>
#endif

// Call this macro once to initialize the JavaScript environment.
JSA_INIT

// define your functions
// use argc/argv pairs to pass args
// use returnValue to return this fn’s result
static void power(int argc, JSValue *argv, JSValue returnValue)
{

double a, b, c;
// call JSAXxx fns to extract args passed by JavaScript callers
a = JSAValueToDouble(argv[0]);
b = JSAValueToDouble(argv[1]);

c = pow (a, b);

// call JSAXxx fns to pass values back to JavaScript callers
JSADoubleToValue(returnValue, c);

}

// you must implement this fn, which registers your lib’s fns with GoLive
void JSAMain() {

JSARegisterFunction ("power", power);

}

/**/
/* Assuming you’ve built this fn into a library named JSASample.dll (or */
/* just JSASample for Mac OS platforms) which resides in the */
/* “Modules/Extend Scripts/Common” folder, your JavaScript code calls */
/* the external library function as follows: */
/***/

JSASample.power (2,3);

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 173

C++ API Synopsis

The C++ API is a superset of the C API. A C++ library is written, built, and used in exactly the
same manner as a C library. However, library functions written in C++ have direct access to
the C++ objects that encapsulate JavaScript arguments and return values; thus, they can
manipulate these objects directly or they can use the JSAXxx functions just as a C library
would.

The following code example illustrates the C++ implementation of the power function shown
in the preceding section.

static void power(int argc, const sValue* argv[], sValue* returnValue)
{

double a = argv[0]->getDouble();
double b = argv[1]->getDouble();

double c = pow (a, b);

returnValue->setDouble (c);
}

Data Types

This section describes the data types GoLive provides for use by external binaries.

JSValue pointer

The JSValue type is an opaque void pointer that is a data element in the argv vector GoLive
passes to an externally-defined binary function. Internally, GoLive casts this pointer’s type as
necessary to hold each element’s data.

typedef void *JSValue;

JSAValueType Scalar Types

The following macros define JSAValueType scalar data types as returned by the
JSAGetValueType function.

Undefined

JSA_UNDEFINED

The undefined or empty value.

174 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Boolean

JSA_BOOL

A Boolean value, expressed as an integer. 0 represents a value of false, and 1 represents a
value of true.

Integer

JSA_INTEGER

A 32-bit signed integer quantity.

Floating Point

JSA_DOUBLE

An 8-byte, double-precision, floating-point value.

String

JSA_STRING

A null-terminated ASCII string.

JSANativeMethod Type

The GoLive external binary API encodes your library’s function definitions as
JSANativeMethod structures. This data type implements the following data structures, which
your functions use to implement their parameters.

JSADrawInfo Struct

The JSADrawInfo struct is used to implement C or C++ drawing functions that can be called
from JavaScript. For more information, see “Drawing Function Examples” on page 190.

typedef struct _JSADrawInfo {
long context;// a DC (Windows) or a GrafPort (Mac)
long left, top;// upper left corner of the drawing rect
long right, bottom;// lower right corner of the drawing rect

} JSADrawInfo;

argc Integer Number of array elements in the *argv vector.

*argv JSValue Vector of argument values

return JSValue Empty pointer passed to your function by GoLive when
it is called. C functions call the approprate
JSAXxToValue function to store a return value in this
pointer. C++ functions can access this pointer directly
or they can call a JSAXxToValue function.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 175

Initialization and Termination Functions

This section describes functions used to initialize or terminate an external binary library.

JSA_INIT Macro

JSA_INIT

The JSA_INIT macro must appear exactly once in the implementation of a binary extension .
This macro call must appear after the JSA.h or JSA++.h include statement and before the
required call to the JSAMain function.

The JSA_INIT macro inlines the JSAEntry function. GoLive tests for the presence of the
JSAEntry function to determine whether an external binary is intended for use by Extend
Script extensions; thus, if the external binary does not call the JSA_INIT macro, GoLive does
not make the external binary available to Extend Script extensions.

The JSAEntry function

● sets an environment pointer containing references to the various JSAXx functions this
Appendix describes.

● calls the JSAMain function.

JSAMain

JSAMain()

Every external binary must implement the JSAMain function.

Your implementation of this function must register your external binary’s functions with the
GoLive JavaScript engine. To do so, it calls the JSARegisterFunction function once for each
function it registers. Optionally, your implementation of the JSAMain function can perform
any additional initialization tasks your external binary requires.

176 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

JSARegisterFunction

JSARegisterFunction(name,foo)

Register the function foo under the name specified by the value of the name parameter.

The JSARegisterFunction function makes an external binary function available under a
specified JavaScript name. Only registered JSANativeMethod functions are available to
Extend Script extension modules.

To register a function, call the JSARegisterFunction function from within the body of the
external library’s JSAMain function. You must call JSARegisterFunction function once for
each function to be registered.

Arguments

JSAExit

JSAExit()

GoLive calls your external binary’s JSAExit function when the extension module that uses it
about to be unloaded. Your implementation of this optional method perform housekeeping
tasks required to exit the extension, such as setting the values of your pointers and variables to
null.

Arguments

None.

Returns

Void.

name String The name under which the foo function is to appear in the
JavaScript namespace. This name must observe JavaScript
naming conventions.

foo Token The token that the function definition associates with the
function’s implementation. For example, the code

myFunk () {return;}

associates the myFunk token with the {return;}
implementation.

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 177

Accessor Functions

C-language library functions must use these accessors to extract arguments from GoLive and
return values to GoLive. C++ functions can access the C++ objects in the GoLive engine
directly, or they can use these accessors in the same way that C-language functions do.

JSAGetValueType

JSAGetValueType(arg) returns an integer value that indicates the type of the arg argument.

Synopsis

#include "JSA.h"

. . .

JSAGetValueType(arg, return)

Arguments

Returns

One of the following integer values indicating the type of the JSA object passed as the value of
the arg parameter:

Example

static void myFn(int argc, JSValue *argv, JSValue returnValue)
{

int a, b, c;
a = JSAGetValueType(argv[0]);
JSAIntToValue(returnValue, a);

}
void JSAMain() {

JSARegisterFunction ("myFn", myFn);

arg JSAValue The JSA value to test

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

0 Undefined

1 Boolean

2 Integer

3 Double (double-precision floating point)

4 Text

178 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

JSAValueToInt

JSAValueToInt(arg) returns the value of the arg parameter as a 32-bit integer.

Synopsis

#include "JSA.h"

. . .

JSAValueToInt(arg)

Arguments

Returns

32-bit Integer

JSAValueToBool

JSAValueToBool(arg)

Return the argument as a boolean (an integer, either zero or nonzero).

Arguments

arg JSAValue The JSA value to test

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

arg JSAValue The JSA value to test

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 179

JSAValueToString

JSAValueToString(arg)

Return the argument as a zero-terminated ASCII string.

Arguments

JSAValueToDouble

JSAValueToDouble(arg)

Return the argument as an eight-byte floating point value.

Arguments

JSAIntToValue

JSAIntToValue(arg, val)

Store the long value val into arg.

Arguments

arg JSAValue The JSA value to test

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

arg JSAValue The JSA value to test

return Integer Optional. An integer value to return instead of the result the
call to this function actually returns.

arg JSAValue The JSAValue object that is to hold the val argument.

val Integer 32-bit integer value to store in the arg object.

180 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

JSABoolToValue

JSABoolToValue(arg, val)

Store the integer value val into arg. Non-zero values of val specify a Boolean value of true.

Arguments

JSAStringToValue

JSAStringToValue(arg, val)

Store the value stored in the zero-terminated ASCII string variable pointed to by val into arg.

Arguments

JSADoubleToValue

JSADoubleToValue(arg, val)

Store the double value val into arg.

Arguments

arg JSAValue The JSAValue object that is to hold the val argument.

val Integer 32-bit integer value to store in the arg object. Non-zero
values of val specify a Boolean value of true.

arg JSAValue The JSAValue object that is to hold the val argument.

val String Zero-terminated ASCII string to store in the arg object.

arg JSAValue The JSAValue object that is to hold the val argument.

val Double-precision floating-poing value to store in the arg
object.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 181

JSAUndefinedToValue

JSAUndefinedToValue(arg)

Set the value of arg to undefined.

Arguments

JSASetError

JSASetError(text)

Generate a Javascript runtime error with the given text as explanation.

Arguments

JSAEval

JSAEval(text,timeout)

Evaluate a specified Javascript scriptlet in the current execution context (inside the function
which called the native code function).

Arguments

Returns

The return value of this call is a JSAValue pointer that points to the result of the scriptlet. If no
timeout was set or the timeout elapsed, this value is undefined.

arg JSAValue The JSAValue object that is to hold the val argument.

text String The text of the error message this function generates.

text String The expression the JavaScript engine is to interpret.

timeout Integer Positive values specify the number of milliseconds to wait
for the call to complelte. If the timeout elapses, the engine
generates a runtime error. A value of 0 causes the engine to
run the scriptlet asynchronously; that is, the call returns
immediately, regardless of whether the scriptlet completes
execution successfully. A timeout value that is less than zero
causes the caller to wait unconditionally.

182 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Example

External library functions use the JSAEval() function to retrieve the values of JavaScript
variables; for example, the following line of code returns the value of the myVariable global
variable.

JSAEval ("myVariable", -1)

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 183

Part III

Appendixes

184 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 185

A Using External Libraries

Extend Script extensions can call JavaScript, C, and C++ functions provided by one or more
optional external libraries. This Appendix describes how to create and use external libraries.

Benefits of External Libraries

The use of an external library is entirely optional. Most Extend Script extensions use only
JavaScript and the special tags that the SDK provides.

This book refers to an external library written in JavaScript as a script library . An external
library written in C or C++ must be compiled specifically for the Mac OS or Windows
platform on which it is to run. This book refers to a compiled library as an external binary
library.

The only time an extension actually requires the use of an external binary is when it must
perform tasks for which JavaScript is not suitable. However, extensions often use external
libraries for other benefits they offer, such as convenience, performance improvements, data-
hiding features, and the cross-platform deployment of compiled code,

● Convenience

One of the best reasons to use an external library is for the convenience it provides to the
extension developer. For example, if you have a common set of functions you’d like to use
in multiple extensions, you could package them in an external library that all of the
extensions can call, rather than duplicating them in the source code of each extension that
uses them.

If you already program in C or C++, you might find it easier to use these languages instead
of JavaScript, in some cases. External libraries provide the means by which you can do so.

● Reduced Code Size

Using external libraries can reduce an extension’s source code size, but it does not reduce
the extension’s memory requirements.

● Performance Improvements From Compiled Binary Libraries

Because compiled code runs faster than interpreted code, you may realize performance
improvements by implementing some functions in C or C++ rather than in JavaScript.

● Data Hiding in Compiled Binary Libraries

JavaScript provides no data-hiding capabilities. To hide the implementation of proprietary
code, you can implement it in C or C++ as a compiled external library. External JavaScript
libraries offer no data-hiding capabililties.

186 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

● Cross-Platform Deployment of Compiled Code

External libraries enable you to deploy C or C++ functions to GoLive extensions running
on Mac OS and Windows platforms.

External JavaScript Libraries

As the name implies, a JavaScript library is written in JavaScript. You can use GoLive or any
text editor to create a JavaScript library.

Implementing A JavaScript Library

The code that implements a JavaScript function in an external JavaScript library is no different
than the code that implements the same function from within an extension’s Main.html file—
the only difference is its location, which is a file that

● has a .js filemane extension.

● is located in the Extend Scripts/Common folder.

NOTE: Don’t confuse .js files with the .scpt files used by previous versions of GoLive.
Extend Script extensions cannot call .scpt files.

Installing An External JavaScript Library

To make an external library available to Extend Script, place its .js file in the Common
subfolder inside the Extend Scripts folder.

IMPORTANT: GoLive loads only the libraries located in the Common folder. Libraries not
located in the Common folder are not available to Extend Script extensions.

When GoLive starts, it loads all of the .js files in the Common subfolder, as well as any
JavaScript code defined by Main.html files in the Extend Scripts folder. Thus, functions
defined “internally” by the Main.html file execute no more quickly than those defined
“externally” by a .js library file.

External JavaScript libraries aren’t treated exactly like the JavaScript in the Main.html file,
however. An external library is meant to define functions only—it should not contain any other
code.

NOTE: Only the function definitions of a script library file are added to each module when
GoLive starts. When loading an external script library, GoLive ignores all other code
the library defines; for example, your script library should not define global variables
tags, or elements—such code does not even execute.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 187

Calling JavaScript Library Functions

GoLive makes external JavaScript library functions available to the scripts of an extension as if
they were part of the extension itself. Using an external JavaScript libraries does not reduce
memory requirements—every module loads its own copy of the external functions when
GoLlive starts.

Implementing External Binary Libraries

This section provides detailed instructions for implementing and building external binaries in
the C and C++ programming languages.

An external C or C++ library is implemented as a binary file:

● On Windows platforms, the library is a dynamically-linked library (DLL).

● On Mac OS platforms, the library is a shared library.

You can build these binaries using any C or C++ compiler that can build a shared library for
Mac OS platforms or a DLL (dynamically-linked library) for Windows platforms. The SDK
provides project files for Microsoft® Visual C++ 6.0 and Metrowerks CodeWarrior 5 Pro.

Including C Libraries

The source files that define an external binary library must include files that provide

● the types and functions this Appendix describes

● platform-specific support

● other libraries or definitions on which the external binary is dependent

This section describes the following #include statements, which provide these resources.

// include JSA header for C or C++
#include "JSA.h" // use "JSA++.h" for C++ implementations

// include any other libs your extension requires
#include <math.h>

// include platform-specific drawing support
#ifdef WIN32

#include <windows.h>
#else

#include <QuickDraw.h>
#endif

188 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Including JSA Interface Files

To use the types and functions this Appendix describes, your external library must include the
JSA.h or JSA++.h interface file:

● An external library implemented in C must #include the JSA.h file, as the following
example does.

#include "JSA.h" // use "JSA++.h" for C++ implementations

● An external library implemented in C++ must #include the JSA++.h file to access C++
objects in the GoLive environment directly.

#include "JSA++.h"

If the library does not access these objects directly, but uses only JSAXx accessor functions
to intereact with them, it can #include either of the JSA.h or JSA++.h files.

Including Platform Support

The Windows.h and QuickDraw.h files provide platform-specific support for Windows and
Mac OS host systems, respectively. The external binary’s sources must include the interface
file that is appropriate for the platform on which the external binary is to be used; to do so, you
can use the WIN32 environment variable in a conditional include statement like the one in the
following example.

#ifdef WIN32
#include <windows.h>

#else
#include <QuickDraw.h>

#endif

Including Additional Interface Files

Your external binary’s sources should also include any other files that provide functionality on
which it depends. For example, the JSASample.c implementation file uses the pow function
that the math.h interface file provides, so it includes this interface file as follows:

#include <math.h>

Initializing the JavaScript Engine

To ensure that the module is intended for access through Javascript, GoLive checks for the
presence of the JSAEntry function. This function is defined by the JSA_INIT macro, which
must appear once in your extension’s code.

The JSAEntry function sets an environment pointer containing a number of function
references, and then it calls the JSAMain function. Your implementation of the JSAMain
function registers your external library functions with GoLive and performs any initialization
tasks your extension requires.

// Call this macro once to set up the necessary structures.

JSA_INIT

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 189

Defining External Library Functions

When defining your external library’s functions, use the JSValue pointer type to exchange
data with the JavaScript environment.

Define your library’s functions using the following keywords and types to define a parameter
block containing an array of arguments and an optional return value:

argc number of arguments in the argv array

argv array of JSValue pointers to pass as arguments to this function

result a JSValue pointer used for temporary storage of the value that this function returns

Math Function Example: C Language

When an extension calls an external library function, GoLive encapsulates the arguments
passed from JavaScript as C++ objects. If the called function is implemented in C, it must use
the “Accessor Functions” on page 177 to extract its arguments from the C++ objects that
encapsulate them.

A typical C-language implementation would look like the following:

#include "JSA.h"
#include <math.h>
JSA_INIT;
// Return arg1arg2

static void power(int argc, JSValue *argv, JSValue returnValue)
{

double a, b, c;
a = JSAValueToDouble(argv[0]);
b = JSAValueToDouble(argv[1]);

c = pow (a, b);

JSADoubleToValue(returnValue, c);
}

void JSAMain() {
JSARegisterFunction ("power", power);

NOTE: Do not attempt to replace a standard library function by defining your own version of it
in an external C library.

190 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Math Function Example: C ++

In contrast to the C API, the C++ API provides full access to the runtime engine and the C++
objects that encapsulate JavaScript arguments; thus, C++ library functions can manipulate
these values directly or they can use the accessor functions that C-language functions must
use.

static void power(int argc, const sValue* argv[], sValue* returnValue)
{

double a = argv[0]->getDouble();
double b = argv[1]->getDouble();

double c = pow (a, b);

returnValue->setDouble (c);
}

Drawing Function Examples

It might often be desirable to implement the drawing of a custom box in native code. The
GoLive Extend Script SDK supports this with the getDrawInfo() method of the Draw object.
This method returns a magic integer number which can be passed on to a native code function.
This function can cast the magic number to a pointer to a JSADrawInfo structure which
contains all necessary drawing information:

typedef struct _JSADrawInfo {
long context;// a DC (Windows) or a GrafPort (Mac)
long left, top;// upper left corner of the drawing rect
long right, bottom;// lower right corner of the drawing rect

} JSADrawInfo;

The drawing rect describes the entire rectangle of the box to draw. This rectangle may be
clipped if only parts of the rectangle are to be drawn. In any case, the drawing context is
clipped to the bounds of that rectangle. The drawing context is an offscreen drawing context
pointing to a bitmap, where certain restrictions might apply). Please make sure that any
temporary changes to the drawing context are undone before returning!

An external C function uses the JSADrawInfo structure as the following example does:

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 191

// Draw an oval into the given rectangle. This demonstrates the
// use of the JSADrawInfo structure.

static void drawOval(int argc, JSValue *argv, JSValue returnValue)
{

long temp;
JSADrawInfo* info;

#ifdef WIN32
HDC dc;
temp = JSAValueToInt (argv[0]);
info = (JSADrawInfo*) temp;
dc = (HDC) info->context;
Ellipse (dc, info->left, info->top, info->right, info->bottom);

#else
Rect r;
temp = JSAValueToInt (argv[0]);
info = (JSADrawInfo*) temp;
r.left = (short) info->left;
r.top = (short) info->top;
r.right = (short) info->right;
r.bottom = (short) info->bottom;
FrameOval (&r);

#endif
}

Because it has direct access to the C++ objects that encapsulate arguments from JavaScript
callers, the C++ version of the drawOval function can provide this functionality in a slightly
different way:

// Draw an oval into the given rectangle. This demonstrates the
// use of the JSADrawInfo structure.

static void drawOval(int argc, const sValue* argv[], sValue* returnValue)
{

int temp = argv[0]->getInteger();
JSADrawInfo* info;

#ifdef WIN32
HDC dc;
info = (JSADrawInfo*) temp;
dc = (HDC) info->context;
::Ellipse (dc, info->left, info->top, info->right, info->bottom);

#else
info = (JSADrawInfo*) temp;
Rect r;
r.left = (short) info->left;
r.top = (short) info->top;
r.right = (short) info->right;
r.bottom = (short) info->bottom;
::FrameOval (&r);

#endif
}

192 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

The language used to implement an external function has no effect on how it is called from
JavaScript. Assuming that either version of the drawOval function is built into an external
library named JSASample, your JavaScript code calls the function as follows:

function drawControl(control,draw) {
if (control.name == "custom")

JSASample.drawOval (draw.getDrawInfo());
}

Registering External Functions

All external binaries must implement the JSAMain function as described here, Your
implementation of this function must register each of your external library functions with
GoLive. To do so, it passes each function’s JavaScript and C-language names to the
JSARegisterFunction function, as in the following example.

void JSAEXPORT JSAMain(void)
{

JSARegisterFunction("power",power);
JSARegisterFunction("drawOval",drawOval);

}

The first argument is the name under which the function is to appear in JavaScript. The second
is the name of the function’s C or C++ implementation. Both functions this example registers
happen to have identical names in JavaScript and in C or C++, but these names do not need to
match.

When the JSAMain function completes, all of the functions it registered can be called from
JavaScript by any Extend Script extension. The functions are made accessible as the properties
of an object named for the binary module; thus, if both of the functions in the preceding
example were built into a library named JSASample.dll (or just JSASample on Mac OS) they
could be called from JavaScript as follows:

result = JSASample.power(2,4)

function drawControl(control,draw) {
if (control.name == "custom")

JSASample.drawOval (draw.getDrawInfo());
}

Implementing Optional Termination Code

When a module is unloaded, GoLive calls the function JSAExit(), which can be implemented
to contain any cleanup code.

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 193

Building An External Binary Library

You can use any Mac OS or Windows C/C++ compiler to build the library as a shared library
for Mac OS platforms or as a DLL for Windows platforms.

Since there are structures involved with this SDK, correct structure alignment settings are
crucial. For the Macintosh, structure alignment is 68K, and for Windows, structure alignment
is 8 bytes.

Installing An External Binary

To make an external library available to Extend Script, place it in the Common subfolder inside
the Extend Scripts folder. This folder can hold any number of external libraries. The functions
defined by these libraries are available to all Extend Script extension modules.

IMPORTANT: GoLive loads only the libraries located in the Common folder at start time.
Libraries not located in the Common folder when GoLive starts are not
available to Extend Script extensions.

GoLive loads external binary functions and JavaScript functions differently. All JavaScript
functions are loaded in memory immediately at startup time; in contrast, binary libraries are
registered with GoLive but not loaded untill an extension calls a function that the library
provides. The time required to load the library makes the first call to an external binary library
a little slower than subsequent calls to that library.

Calling C and C++ Library Functions From JavaScript

The functions an external binary provides can be called by any extension. The external library
is loaded on demand the first time it is called; subsequently, it remains in memory until the
module is unloaded. The module is unloaded

● when GoLive quits

● when the user chooses the Reload Scripts palette item

● when the moduleName.unload() function is called.

NOTE: The unload function destroys its module’s global data. The next time a function in the
libarary is called, GoLive reloads the module and creates new global data for it.

JavaScript code calls external C and C++ library functions identically. If we assume that the
above code is part of the file Utils.dll (Windows) or Utils (Mac OS), this function would
be called from Javascript as follows:

a = Utils.power (2,5);

194 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Measuring Performance

One useful metric for testing code performance is the time required to complete a function
call. You can use the Date object provided by JavaScript to measure code performance by
getting the system time in millliseconds immediately before and after calling the function
being tested. For example, the code to test the execution speed of scripted and compiled
versions of the same function would look like the following example.

// measure time for script fn to complete
date1 = new Date()
myScriptFunction()
date2 = new Date
scriptTime= (date2-date1)
writeln(“Script code execution time” + scriptTime + “milliseconds”)

// assume the compiled fn is built into myExtLib.dll
// measure time for compiled fn to complete
date3= new Date()
myExtLib.myCompiledFunction();
date4 = new Date
compiledTime = (date4-date3)
writeln(“Compiled code execution time” + compiledTime + “milliseconds”)
diff = (scriptTime - compiledTime)

if (diff == 0)
writeln (“Both functions executed in the same amount of time.”)

if (diff > 0)
writeln(“Compiled code was faster by “+ diff + “milliseconds.”)

else
writeln(“Script code was faster by” + (-diff) “milliseconds”)

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 195

B Sort Order Tables

This chapter lists the values GoLive uses to sort items in the Windows menu and the Objects
palette.

Window Menu Items

The entries of the Window menu are sorted groupwise. The upper two digits denote a group,
while the lower two digits are the sort order within the group. Groups are separated by menu
separators, which means that f.ex. all order numbers which start with 90xx are grouped
together and separated from the other groups with a menu separator. Table B.1 lists the values
used to sort Window menu items.

TABLE B.1 Codes used to sort Window menu items

Objects 0101

Color 0110

Inspector 2001

View Controller 2001

Debug 3001

Transform 3001

Align 3002

Tracing Image 3003

Floating Boxes 5001

Table 5002

Link View 7001

Source Code 7002

Javascript Shell 7003

Markup Tree 9001

History 9003

196 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

Objects Palette Entries

The objects in the Objects palette are sorted in two levels. The first level is the order the tabs
for each group appear in, while the second value is the sort order within one group of icons.
The higher the value is, the further to the right the icon or tab appears. Please note that many
built-in modules contain more than one icon. This is for example the case for all icons within
the Head section. New icons cannot be placed between these icons, only left or right of these
icons. Table B.1 lists the values used to sort Objects palette entries.

TABLE B.2 Codes used to sort Objects palette entries

Name taborder order icons

Basic 0

Layout Grid 10 2

Floating Box 15 1

Table 20 1

Image 30 1

Plugin 40 5

Java™ Applet™ 50 1

Object 60 1

Line 70 1

Horizontal Spacer 80 1

JavaScript 90 1

Marquee 100 1

Comment 110 1

Anchor 120 1

Line Break 130 1

Tag 140 1

(reserved for future use) 150 1

Smart 1

Smart items 200 all

Forms 2

Form items 10 all

Head 3

Head items 20000 all

Frames 4

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 197

Frame items 20000 all

WebObjects 5

WebObjects items 1-4 all

Site 50

Site items 1 all

Site Extras 51

Site extras items 2 all

QuickTime 5000

QuickTime items 1 all

Custom 20000

Custom items 20000 all

Extensions (default) 30000

Extension items (default) 30000

198 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 199

Glossary

Element

A Tag and all of the attribute values required to define an instance of the entity the tag
represents.

Parse

To read the elements in a document and generate a tree of markup objects representing the
elenents the document defines. GoLive parses the active document in response to any of the
following events:

● The user drops an Objects palette icon onto a GoLive document window.

● GoLive reads a document containing a custom HTML element defined by the jsxelement
and jsxpalettentry elements.

● The user switches to Layout View from another view in the document window.

Tag

Alphanumeric tokens enclosed by angle brackets (<>), as in the , , or <H1> tags.
Tags that are used singly, such as the tag, are unary tags. Tags that must be used in
pairs are binary tags; for example, the <H1> opening tag must always be paired with an </H1>
closing tag. When this book refers to a binary tag, it names the opening tag only and assumes
you understand that the presence of the closing tag is implied

200 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

GoLive™ 5.0 Extend Script SDK Programmer’s Guide 201

Index

A
alert dialog

displaying 44
alert function 44
Alt key 46
attributes

dynamic 49
key 45
name 35

C
checked property 48
Cmd key 46
Ctrl key 46

D
drawBox function 33
drawControl function 33
drawing functions

errors in 33
dynamic attribute 49

E
enabled property 48
Encodings module 29
event-handling functions

menuSetup 50
menuSignal 44

Extend Script extension
installing 27

Extend Script module
enabling 26

F
functions

alert 44

drawBox 33
drawControl 33
menuSetup 50
menuSignal 44

G
global objects

menus 35

J
Japanese character sets

Encodings module and 29
JavaScript

version information, flavor information 17
jsxcontrol

characteristics of 55
jsxitem

checked property of 48
jsxitem tag 43

dynamic attribute of 49
jsxmenu tag 42
jsxmenubar tag 42
jsxmodule tag 33

K
key attribute 45
keyboard shortcuts

assigning to menu items 45
keyboard shortcuts and 45

L
library

C language 17
C++ language 17

202 GoLive™ 5.0 Extend Script SDK Programmer’s Guide

M
menu

adding to menu bar 42
checked state of 48
defining name of 42
initializing 50
overview of creating 42

menu bar
adding menu to 42

menu items
assigning keyboard shortcuts to 45
defining 43
disabling 48
enabling 48
initializing dynamically 49
Special menu and 51

menus array 35
menuSetup function 50
menuSignal function 44
modifier keys 46
modules

creating 38
disabling 29
Encodings 29
Network 29

N
name attribute 35
name property 35

object comparison and 36
Network module 29

O
Option key 46

P
properties

enabled 48
name 35

R
reparsing

defined 34

S
scripts

execution timeout 33
shared libraries 17
Special menu

adding items to 51
submenu

defining 47

T
tags

jsxitem 43
jsxmenu 42
jsxmenubar 42
jsxmodule 33

timeout
script execution 33

U
Unicode 17
user alert

displaying 44

	Welcome
	About The GoLive Extend Script SDK
	Compatibility Information
	About This Book�
	Who Should Read This Book�
	How To Use This Book�
	Document Conventions�

	Programmer’s Guide
	Getting Started
	Contents of the GoLive Extend Script SDK
	The ReadMe.html File
	The Samples Folder
	The GoLive SDK Documentation Folder

	Installing the GoLive Extend Script SDK
	Installing Adobe GoLive
	Installing the SDK Sample Code and Documentation
	Enabling the Extend Script Module
	Installing the Sample Extensions
	Configuring GoLive for Extend Script Development
	Enabling the JavaScript Shell palette

	Examining the Sample Extensions
	Extensions to the Special Menu
	Custom Menus
	Custom Palette Tabs and Custom Palette Items

	Executing JavaScript Code in the GoLive Environment
	Setting the JavaScript Timeout

	Accessing Page Elements From JavaScript
	JavaScript Objects in the GoLive Object Model
	Name Property and Name Attribute
	JavaScript Object Arrays
	Comparing Objects

	Anatomy of an Extend Script Extension
	Creating An Extend Script Extension Module
	Creating the Extension Folder
	Creating the Main.html File

	Adding SDK Tags and JavaScript Functions to the Module

	Menus
	Custom Menus
	Overview
	Adding the Menu Bar Tag
	Defining the Menu
	Defining Menu Items
	Implementing the menuSignal Function

	Assigning Keyboard Shortcuts To Menu Items
	Multiple Custom Menus
	Submenus
	Setting A Menu Item’s Checked State Explicitly
	Setting a Menu Item’s Enabled State Explicitly
	Setting The State of A Menu Item Automatically
	Adding Items to the Special Menu

	Dialogs and Palettes
	Modal Dialog Windows
	Defining the Modal Dialog Window
	Defining Dialog Content
	Displaying the Dialog

	Implementing the controlSignal Function
	Floating Palettes
	Using the Dialog Editor Extension

	Custom Elements
	Overview
	Tags For Creating Custom Elements
	Custom Box Event-Handling Functions
	Development Overview

	Defining A Custom HTML Tag
	Defining the Custom Tag’s Palette Icon and HTML Content
	Installing A Custom Entry In the Objects Palette
	Adding Palette Entries to a Built-in Tab
	Adding Palette Entries to a Custom Tab

	Basic Custom Boxes
	Initializing the Custom Box
	Displaying the Custom Box
	Inspecting the Custom Element

	Resizing Custom Boxes
	Built-In Undo Support

	Drawing Custom Controls
	Updating A Control’s Appearance Immediately

	Redefining Existing Tags

	Manipulating Document Objects
	The Markup Tree
	JavaScript Access to the Markup Tree
	Selections
	Retrieving the Current Selection
	Setting the Current Selection

	Manipulating Elements Programmatically
	Supporting the Undo and Redo Commands
	Creating the Undo Object
	Initializing the Undo Object
	Implementing the undoSignal Function
	Accessing the Document History

	Files
	Creating a File Object
	Built-in Access to Commonly-Used Folders
	Creating A File Object Explicitly

	Testing For the Presence of a File or Folder
	Determining What the File Object Represents
	Creating A Folder Programmatically
	Retrieving Files Programmatically
	Retrieving A File’s Location
	Moving Files and Folders
	Copying Files and Folders
	Uploading Files To Remote Volumes

	Additional Topics
	Working With Pictures
	Creating Pictures
	Deleting Pictures

	Releasing Saved JavaScript References
	Timed Tasks
	Persistent Data
	Progress Bars
	Localization

	Debugging
	Integrated JavaScript Source Debugger
	Enabling The Integrated Debugger and Other Debug Services
	Script Debugger Window
	Setting Breakpoints
	Script Breakpoints Window

	Debugger Object ($)
	JavaScript Shell Palette

	Reference
	Tags
	Modules
	jsxmodule

	Locales
	jsxlocale

	Dialogs
	jsxdialog
	jsxpalette
	jsxcontrol

	Palette Items and Foreign Tags
	jsxpalettegroup
	jsxpalettentry
	img
	jsxelement
	jsxinspector
	Custom Element Example

	Menus
	jsxmenubar
	jsxmenu
	jsxitem

	Objects
	Global Properties and Functions
	Global Properties
	Global Functions
	fileGetDialog
	filePutDialog
	alert
	confirm
	prompt

	write
	writeln
	clearOutput
	absoluteURL
	relativeURL
	createPicture
	disposePicture
	startTimer
	stopTimer
	startAction
	submitAction
	setActionName

	GlobalPrefs Object
	Prefs Object
	Application Object
	Application Object Properties
	Application Object Functions

	Document Object
	Document Object Properties
	Document Object Functions

	Module Object
	Module Object Properties
	Module Object Functions

	Link Object
	Link Object Properties
	Link Object Functions

	Box Object
	Box Object Properties
	Box Object Functions

	Collection Object
	Collection Object Properties
	Collection Functions

	Picture Object
	Picture Object Properties
	Picture Object Functions

	Control Object
	Control Object Properties
	Control Object Functions

	Dialog Object
	Dialog Object Properties
	Dialog Object Functions

	Draw Object
	Draw Object Properties
	Draw Object Functions

	Markup Object
	Markup Object Properties
	Markup Object Functions

	Menu Object
	Menu Object Properties
	Menu Object Functions

	MenuItem Object
	MenuItem Object Properties
	MenuItem Object Functions

	Selection Object
	Selection Object Properties
	Selection Object Functions

	Undo Object
	Global Undo Functions
	Undo Object Properties
	Undo Object Functions

	History Object
	History Object Properties

	SiteReference Object
	SiteReference Object Properties
	SiteReference Object Functions

	SiteCollection Object
	Site Collection Object Properties
	Site Collection Object Functions

	File Object
	File Object Properties
	File Object Functions

	$ Object (Debugger Object)
	$ Object Properties
	$ Object Functions

	Event-Handling Functions
	Global Functions
	initializeModule
	terminateModule

	Custom Boxes
	parseBox
	drawBox
	boxResized
	inspectBox

	Controls
	controlSignal
	menuSetup
	menuSignal
	undoSignal
	linkChanged
	Custom Controls
	drawControl
	mouseControl

	C and C++ APIs For Use In External Binary Libraries
	C API Synopsis
	C++ API Synopsis
	Data Types
	JSValue pointer
	JSAValueType Scalar Types
	Undefined
	Boolean
	Integer
	Floating Point
	String

	JSANativeMethod Type
	JSADrawInfo Struct

	Initialization and Termination Functions
	JSA_INIT Macro
	JSAMain
	JSARegisterFunction
	Arguments

	JSAExit
	Arguments
	Returns

	Accessor Functions
	JSAGetValueType
	Synopsis
	Arguments
	Returns
	Example

	JSAValueToInt
	Synopsis
	Arguments
	Returns

	JSAValueToBool
	Arguments

	JSAValueToString
	Arguments

	JSAValueToDouble
	Arguments

	JSAIntToValue
	Arguments

	JSABoolToValue
	Arguments

	JSAStringToValue
	Arguments

	JSADoubleToValue
	Arguments

	JSAUndefinedToValue
	Arguments

	JSASetError
	Arguments

	JSAEval
	Arguments
	Returns
	Example

	Appendixes
	Using External Libraries
	Benefits of External Libraries
	External JavaScript Libraries
	Implementing A JavaScript Library
	Installing An External JavaScript Library
	Calling JavaScript Library Functions

	Implementing External Binary Libraries
	Including C Libraries
	Initializing the JavaScript Engine
	Defining External Library Functions
	Registering External Functions
	Implementing Optional Termination Code

	Building An External Binary Library
	Installing An External Binary
	Calling C and C++ Library Functions From JavaScript
	Measuring Performance

	Sort Order Tables
	Window Menu Items
	Objects Palette Entries

	Glossary
	Index

